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The Exhi bit 

POCKET COMPUTING 

An Exhibit at The Computer Museum 
Boston, Massachusetts USA 

Today pocket calculators are so pervasive that we almost take them for 
granted . Portable and convenient, people use them to do everything 
from their math homework, and balancing their checkbooks, to calculat
ing the expected return on investments, and designing airplanes and 
automobiles. The pocket electronic calculators widely used today are 
only about fifteen years old. However, the need for pocket calcu l a
tors is ancient . For centuries people from vi rtually every culture 
have built small computing devices to carry in their pockets or attach 
to their clothing. 

I,: u-
To present thi s st Q.D:' The Computer Museum :i-&--a-e-ve1-o'p-i-n g an exhi bit 
titled "~t-CemJ3-\;lt+n' • II By combining historic artifacts with the 
latest technologies, the exhibit will present man's continual efforts 

'"to , ~pp-lemen.t h.is_personal abilities to remember and calculat e wlth 
devi ces that he can ca rry with 1 m. fi e:: PKtti- . -wi~ll 1"so 111 tJs trate 
the di verse purp.oses _for which POcK'et calculators have ,been 
constructed, and the mechanical and mathematical concepts behind these 
miniaturized devices . It will be an exciting experience for visitors 
of all ages and backgrounds. ' 

Since the interesting and unique aspect of pocket calculators is the 
way in which they are used, the backbone of the exhibit will be a 
display of people who have used pocket calculators : from ancient 
shepherds using pebbles to count their flocks; to a 16th-century 
Japanese silk merchant with his soroban; to an engineer with his slide 
rule; to school children completing their homework with electronic 
calculators . This series of small settings will combine historic 
artifacts with the outfits and tools approp r iate to the users of the 
calculators. Visitors will immediately appreciate the contexts of 
these settings and identify important themes in the story of pocket 
calculating. In addition, a small display of calculating artifacts 
will accompany each setting to show other related devices of the 
period. 

The historical account of the pocket calculator will be only part of 
the exhibit. Associated with each seminal calculator will be an area 
where visitors can try thei r own hand at solving problems using the 
device. Visitors will discover what it was like to use sorobans, 
Napier's Bones, or slide rules. Accom ~~~~~~HH~~~~~~ 
pl ys ill esen' ns usi n . tapes that t~e hi stori ca 1 
a cu t al im ance 0 devic • ~~he working 
sorobans will be complemented by a display of their importance in 
Japanese education and society, including a video of school children 
€,OffiI39tir:l~ QQ... sorobans. These interactive areas will involve visitors 
in the exhibit, allowing them to explore how calculating was performed 
in times and cultures different from their own. 
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The final area of the exhibit will focus on the technology of the 
present and future. A section where visitors can use state-of-the-art 
electronic calculators will allow them to put older devices in per
spective. A wide collection of electronic pocket devices will illus
trate the incredible increase in power and reduction in size and price 
that has occurred in pocket calculators over the past fifteen years. 
With this increasing power calculators have started to perform new and 
different tasks, such as doubling as personal portable data bases. 
The pioneering role of the Japanese in the manufacture and application 
of the electronic calculator will be an important theme in this sec
tion of the exhibit. At the end of this section visitors will be 
invited to offer their speculations on how they will be using pocket 
calculators in the future. 

Background 

The Computer Museum is a public non-profit institution supported 
extensively by companies in information processing industries. For 
example, Hewlett-Packard has provided support for the Pocket Computing 
exhibit. The Museum is dedicated to impartially preserving the his
tory of the computer revolution. All donations to the Museum are tax
deductible. 

IIPocket Computing ll is being developed by Gregory W. Welch, a Harvard 
University graduate in the History of Science who has developed exhib
its at The Computer Museum for the past three years. The exhibit is 
scheduled to open at The Computer Museum, Boston, Massachusetts, USA 
on October 9, 1986. It will occupy approximately 1000 square feet of 
space in a gallery reserved for special exhibitions and will be in 
place for one year. Over 100,000 visitors are expected to view the 
exhibit. 

The Collection 

Among the historic pocket calculators contained in The Computer 
Museum1s collection are: 

- a set of Napier1s Bones from the 17th century 
- an 18th century example of Leadbettor1s slide rule 
- a French brass sector and divider from the 18th century 
- the Webb adder from the late 19th century 
- various examples of Fowler1s circular slide rules 
- the Golden Gem calculator 
- the Curta calculator 
- the Bowmar Brain electronic calculator, c. 1971 
- the TI Datamath calculator 
- the National Semiconductor Novus 650 
- early Sinclair electronic calculators 
- the HP-35 
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Museums take the opportunity to expand their collection While develop
ing exhibits. While The Computer Museum has a substan,t1'al number of 
pocket computing devices, there are gaps in its coll~ction. Most 
notable is a paucity of Japanese products. As innovators in the mini
aturization of calculators, Japanese firms such a,s Sharp have brought 
pocket electronic calculators into every day uS,.e around the globe. It 
is, therefore, important for Japanese product~ to be represented in 
the Museum's collection. / 

Ideally The Museum would like an example of every calculator manufac
tured by Sharp for its permanent collecti'on. For the purpose of the 
Pocket Computing exhibit we seek essentially four artifacts from 
Sharp: 

1) an example of their first pocket calculator, 
23) an example of their most sophisticated or powerful calculator, 

) an example of their smallest calculator, 
4) an example of their most unique or curious pocket calculating 

or memory device. 

Documentation regarding operation, price, and history of each device 
would be much appreciated. Additional Japanese artifacts we are are 
seeking for the exhibit are: ancient miniaturized sorobans, a video 
tape of school children using sorobans, and an ancient silk merchant's 
jacket. All these pieces will help us develop an exhibit which shows 
not just the most advanced calculators, but also the history of their 
development, and some of the mYriad purposes for which they have been 
designed. 

Each donation will be duly acknowledged as part of The Computer 
Museum's permanent! collection which includes a label on exhibited 
items identifying 'the donor, and mention in the Museum's Collection 
Report distributed annually to all Museum members. The donation of 
these artifacts to The Computer Museum will ensure that the position 
of Japanese firms in the development and production of pocket calcula
ting devices is appropriately acknowledged and preserved. 
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ON ONE HAND.· .. 
Pocket calculators then and now 

.r 

A new exhibit for The Computer Museum by The Office of Michael Sand 
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CALCULATOR SLIDE TALK FOR DIGITAL COMPUTER MUSEUM 

SLIDE 

GB & exhibit 

NSF roots 

Cal poster 

TEXT 

Hello, I'm Gwen Bell the Assistant Keeper 

of the Di~ital Computer Museum. 

This talk describes the evolution of 

calculators -- one ancestral root of the 

computer tree. The National Science Foundation 

identifies four -- punched card eGuipment, 

telephone switchin~ techniGues, radio and tv, 

and desk calculators. 

All pre-computins calculators are ~rouped into 

families and Senerations each characterized b~ 

different technolo~ies. 1600 marks the 

emer~ence of manual calculatin~ devices 

startin~ the 4th pre-computer ~eneration; the 

3rd ~eneration be~ins in 1800 when mechnical 

control devices emer~ed; 1890 starts the 



An Abacus 

Soroban 

Soroban/calc 

Countin~ table 

Quipu 

poster 

electro-mechanical ~eneration; and 1930 marks 

the first seneration before computers. Each 

seneration is approximately half the lensth of 

time o~ the seneration that precedes it, 

illustratinS the increasins rate of chanse. 

Lons before mechanical calculators, 

abacus-like devices were developed and widely 

used. Europeans often claim the Esyptians 

invented the abacus and the Romans improved it 

by eliminatins beads. 

The Chinese also claim its invention with the 

Japanese soroban improvement with the 

elimination of two beads. 

The Japanese are still workins the problem • 

In 1979 they combined a soroban with an 

electronic calculator makins a dual processor 

system. 

Historically, the use of balls -- as in this 

early reckonins table 

as in this Inca Guipu 

or knots 

have been common 

devices for makinS calculations. 

About 1600 the three families of calculators 

started: look UP tables, rules ~or analos 

computation, and simple mechanical 



John Napier 

Napier's bones 

Napier's bones 2 

French calc. 

T~pesetter 

Pa~e of errors 

Chem Rubber Hbk 

calculators. 

John Napier a Scottish mathematician, 

developed the ke~ ideas at the base of two of 

these lines. 

He inscribed the first look-up tables on all 

sides of tin~ sticks of ivor~. Each rod bears 

a multiplication table for a particular di~it. 

Multiplication and division are handled b~ 

addition and subtraction, providin~ a Guick 

readout of products. 

Napier's bones probabl~ spawned the first 

pocket calculator -

this earl~ 18th centur~ combination of an 

abacus and Napier's bones, enclosed in a 

small wooden box with a slate on the back. 

With the perfection of printin~ devices and 

refinement in the production of paper, the 

carr~-about sticks were replaced b~ books of 

tables. . 

Books often had so man~ mistakes that whole 

volumes of corrections had to be printed. 

Other times errors were introduced as a 

cop~ri~ht stratesem. 

With electronic memor~ stora~e becomin~ 

smaller and smaller, books of tables such as 



Bones & calc 

Slide rule 

Gunter Scale 

Thatcher rule 

Table & rule 

Bouchon 

the Chemical Rubber Handbook containinS 

mathmatical formula, phYsical properties, and 

conversions, will probably disappear to be 

replaced by pocket calculators that remember 

the information and produce answers on demand. 

We will, in fact. be back to a device about 

the size of Napier's bones but that contains 

millions of times more information. 

Napier's 1614 concept of losarthms provide the 

basis for the slide rule--an analos 

calculatins device. 

The first slide rule did not look like these 

modern ones. It had no movins parts but used 

a compass to make computations. This is part 

of an orisinal straisht losarithmic scale 

invented by Edmund Gunter in 1620. A year 

later, in 1621. William OuShtred claimed to 

have used two of Gunter's lines to make a 

straiSht losarithmic slide rule and in 1630. a 

circular slide rule. 

In the mid nineteenth centurY, slide rules 

were refined -- the Thatcher rule contains 

many number series; 

Another inscribed tablular material; 

And the sentleman could have one in the form 

of a pocket watch. 



Planimeter 

Bush anal~zer 

calculator tree. 

Schickard device 

Sch machine 

Sch drawins 

EnSineers usins slide rules beSan to intesrate 

these with Sears to make measurements. The 

planimeter calculates the area as its diameter 

is drawn. The answer is read on an inscribed 

rule. 

In 1930, at M.I.T., Vannevar Bush at completed 

the epitome of the analos calculator, a 

differential anal~zer on which variables are 

rpresented b~ the number of revolutions of 

mechanical shafts 

The third set of ideas startins in the earl~ 

sixteen hundreds relate to the evolution of 

the desk calculator. 

In a letter dated September, 1623, Wilhelm 

Schickard of Tubinsen, German~, wrote to Dr. 

Hammer of Stuttsart, -The same thinS which ~ou 

have done b~ hand calculation, I have Just 

recentl~ tried to do in a mechanical wa~.· 

-I have constructed a machine which 

atuomaticall~ reckons tosether the siven 

numbers in a moment, addins subtractins, 

multipl~inS and dividinS.· 

The next letter contained sketches of the 

machine, and a third told the sad stor~ of the 

machine's beins destro~ed in fire. 



Sch drawinS 

Pascal photo 

Pascal calc. 

Pascal draw 

Modern pascal 

Pascal calc. 

It's hard to tell how successful his machine 

would have been because of the lack of 

precision work at that time. 

The famous French mathematician and 

philosopher, Blaise Pascal -- at ase 19 in 

1642 -- built several mechnical calculators, 

causins ripples of concern about unemplo~ment 

amonS the tax administrators -- of which his 

father was one. 

Numbers are represented on the calculator b~ 

the position of a ten-tooth Sear. 

Two features merit special note. One, the 

carr~ mechanism, a weishted ratchet Sraduall~ 

storins enerS~ as it approaches 9. When it 

passes from 9 to 0, the ratchet is released 

and in fallinS transfers a unit to the wheel 

of the next hiSher order. 

Two, complement arithmetic was used for 

subtraction because the wheels could onl~ So 

clockwise. 

These wheels are sisnificant -- before Pascal 

and Schichard no one used a wheel in a disital 

calculator. 

None of the Pascal adders worked ver~ well. 

The mechanisms were forever out of order and 

onl~ Pascal and one of his workment could fix 



Leibniz machine 

Thomas Arith 

drum drawins 

Thomas 

Arithmometer 

Millionaires 

Sears above the c~linders and these in turn 

enSased the addins section. 

Much to Leibniz's disappointment. his machines 

did not meet his intended excellence. Onl~ 

one such machine was built. but it provided 

the basis of the first reall~ successful and 

practical mechnical calculator. 

the Thomas Arithmometer. First introduced in 

1820. thirt~ ~ears later it was a commercial 

success. 

Thomas used the stepped drum principle of 

Leibniz in conjunction with a simple s~stem of 

countins sears and an automatic carr~. 

For all this. it met with resistance. 

Scientific American wrote in 1849. that the 

Thomas machine is ·said to be one of the most 

astonishinS pieces of mechanism that has ever 

been invented. but to our view. its complexit~ 

shows its defectabilit~.· Which Soes to show 

how wronS predictions can be --

the Thomas Arithmometer was still sellins in 

the 20th centur~. 

The Millionaire. invented in 1893 b~ Otto 

Steiser. was the first major direct 

multipl~ins calculator that was a commercial 

success. 



Mill drawins It incorporated a mechanical multiplication 

table instead of usins repeated additions. 

Millionaire broch. The basic millionaire model was repeatedlv 

8 diSit 

Time line 

Baldwin 

Baldwin machine 

Baldwin drawinS 

Bald draw ii 

tried to be improved upon -- 6 disit, then 8 

disit, and finally ten disit machines were 

made. 

A keyboard and eventuallv a motor were added 

to meet competition. In 1935, produc~ion was 

s~opped after 4,655 Millionaires had been 

sold. 

The ideas of Frank Baldwin and Wilsodt Odhner 

formed the basis of electrico-mechanical 

calculators. 

In 1873, Baldwin applied for a patent for a 

machine that replaced the Leibniz and Thomas 

cylinders with a sinSle cylinder 

from whose peripherY a variable numper of 

teeth (1 throuSh 9) protrude accordins to the 

motion of the settins lever. The levers 

proJect throush slots at the front of the 

machine. 

When the lever is set, correspondins numbers 

of teeth proJect from the wheel. 

With a crank of the handle the proJectins 

teeth mesh with a coswhee1 activatins a disit 



Odner machine 

Odner factor~ 

Brunvisa 

Walter 

Curta calc. 

Felt 

Macaroni box 

wheel, and the numbers correspondins to the 

proJectins teeth appear in the resister. 

A ~ear later in Russia -- another one of those 

historical accidents happened -- a Swede, 

Wilsodt Odhner, patented a machine that was 

almost identical to Baldwin's. 

In 1886, Odhner besan to manufacture in 

Russia, sell ins allover Europe except in 

German~, 

where the patent rishts were bousht b~ another 

firm that placed a similar, and more 

successful machine on the market -- the 

Brunsvisa. 

And then the Walther. These machines can 

still be seen in operation toda~. 

The Curta represents the end of this 

evolutionar~ line -- a hand held rotar~ 

calculator. 

The development of ke~ punch eauipment for 

telesraph~ and t~pewritins, led to the 

possibilit~ of a ke~ punch calculator. Dorr 

E. Felt, a 24 ~ear old machinist, 

went shoppins on Thankssivins Da~ 1884. He 

bousht a macaroni box, some meat skewers, 

staples, elastic bands and strins. 



Mac box ii 

Comp ke~ 

Comptometer 

Comptometer ad 

BurrouShs 

Burroushs mach 

Side view 

Burroushs use 

BurrouShs 

B~ New Year's Da~. he had put tosether the 

protot~pe comptometer -- the first successful 

ke~driven calculator. 

He knew his machines must calculate faster 

than accountants. man~ of whome could mentall~ 

add four columns of fiSures at one time. 

It was a strusSle to set the machines on the 

market because he had to train the operators. 

One of the thinss to learn was complement 

arithmetic. first introduced in the Pascal 

adder. 

The Comptometer advertised as -the machine sun 

of the office,- and the Burroushs ke~driven 

addins machines became the extremel~ popular. 

William Burroushs sot his idea of buildins a 

calculator while workins with Baldwin. 

In 1888. he obtained his first patent and had 

made 50 machines b~ the next ~ear ••• but the~ 

proved impossible for an~one but Burroushs to 

operate. 

After the~ were recalled, he invented a 

corrective automatic device. 

At the turn of the centur~ the manuall~ 

operated Burroushs and Comptometers were the 

workhorses of office forces, 

but these were soon to be replaced b~ 



Monroe electric 

Monroe electric 

Poster 

electrified machines. 

In 1912, Frank Baldwin Joined forces with 

Monroe to form the Monroe calculator Compan~, 

pioneerin~ electric ke~punch addin~ machines, 

that predominated the office in the electronic 

~eneration. 

The families of pre-computin~ devices 

described developed no new si~nificant members 

after 1930. Their use proliferated throu~h 

the fifties, be~an to diminish in the sixties 

and are bein~ totall~ diSPlaced b~ di~ital 

computers. 



Moreland adder 

Mech cal line 

Leibniz 

stepped wheel 

them. 

Sir Samuel Moreland, Master of Mechanics to 

Kins Charles II of Ensland developed three 

Pascal-like machines. Althoush the~ were 

auite prett~ the~ didn't advance an~ new 

principles and were no more successful than 

Pascal's. 

A more widel~ used set of calculatins devices 

ma~ be traced back to the stepped 'reckoner, 

developed b~ Gottfried Wilhelm Leibniz of 

German~ in 1671. 

Familiar with the machines of Pascal, Leibniz 

envisioned a calculator that could perform the 

four arithmetic functions with speed and 

accurac~. 

His machines, which he called his livins bank 

clerks, had two basic elements; a collection 

of pin wheels for addins and a movable 

carriaSe that could follow decimal places when 

multipl~ins. The two sections were lined b~ 

stepped c~linders containins ridse-like teeth 

of different lensths correspondins to the 

disits 1 throush 9. Turnins the crank that 

connected the c~linders enSased the smaller 
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.. On One Hand ... / Exhibit Worksheet 

IB3 Jl Shepherd 
Heading: Shepherd's Clay Beads / Circa 500 B.C. 

Dialogue: "Let me see if I have all of my sheep." 

Story: 

IB3 ~ Interactive 
Task: Compare the beads in the satchel with the sheep that the shepherd leaves 

with in the morning, and again with the sheep that she heads home with 
to see if they are all there. 

Tools: A burlap satchel mounted to the wall contains clay beads which can be felt 
through the cloth, but not removed. 

Two (2) illustrations, one showing the shepherd and her flock starting out 
in the morning, and the other when she is about to return home in the 
evening. 

If you have the right # of tokens and the right # of sheep, then she can go 
home. 

Visuals 
None 



On One Hand ... / Exhibit Worksheet 

Display Case 
Artifacts: Tally Stick 

Korean Computing Rods 
Roman Bones Styluses 
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On One Hand ... / Exhibit Worksheet 

co n Pasta Maker 
Heading: J etons / Circa 1400 A.D. 

Dialogue: How much for 3 lbs of Linguini? 

Mama Mia! Let me check! 

Story: Instead of pebbles, an Italian Pasta Maker from the middle ages used 
copper coins called "Jetons" (from the French verb "jeter" meaning "to 
throw") to calculate the price of her wares. The coins were moved about a 
set of lines representing the different values of ten (ones, tens, hundreds, 
etc.). Since Roman numerals then used were difficult to caculate with by 
hand, jetons allowed her to find the price of many pounds of pasta and 
calculate change must faster. 

co ~ Interactive 
Task: Simple addition problem. 

ie. lIb of pasta is _ therefore 6lbs is _ 

Include roman numerals in the explaination. 

Tools: Velcro jettons and matching strips on the graphic panel. 

co $3 Visuals 
- Contest between J ettons & Arabic figuring 
-Image from Darius vase 
-Dutch Jetton Cylinders 
-Schwarzenberg's Der Tevtsch Cicero 
-Livre Des Getz: late 15th century 



On One Hand ... / Exhibit Worksheet 

Display Case 
Artifacts: J@,ns 

Pasta 
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On One Hand ... / Exhibit Worksheet 

]]) n Silk Merchant 
Heading: Abacus / Circa 1450 A.D. 

Dialogue: "Hmmm ... 35 yen for 10,000 bolts of silk. Is that a fair price?" 

Story: A mi~urized abacus was useful to the 15th century Chinese silk 
merchant on his travels to help quickly calculate the price of quantities of 
silk. An improvement on the loose pebble and coin counters used since 
ancient times, the wire-strung bead abacus originated dut1ing the Middle 
Ages in the Middle East and from there spread east. In many parts of the 
world abaci continue to be widely used. 

]]) ~ Interactive 
Task: Simple written steps and diagrams which teach the fundamentals of 

using the abacus. 

1str-the units, 
then 5's and 10's, 
and finally the carry into the next row 

Tools: Simple store bought abacus mounted on a rail infront of panel. 

Possibly a group of school desks in the center of the room with mounted 
abacus on them, and more advanced problems to work through. 

ill) $3. Visuals 
-Silk Merchant's Shop Interior #1 
-Silk Merchant's Shop Interior #2 
-Video 



On One Hand ... / Exhibit Worksheet 

lID ~ Display Case 
Artifacts: Abacus 

Soroban 
Ancient Arab Astrolabe 
Small Soroban 
(books) 
"How to Use the Chinese Abacus" 
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On One Hand ... / Exhibit Worksheet 

J1: Jl Astronomer 
Heading: Napier's Bones / Circa 1630 A.D. 

Dialogue: "What will be the possition of Venus 3 months from now?" 

Story: Invented in the early 1600's by the Scottish mathematician, John Napier, 
"Napier's Bones" made the lengthy calculations of 17th-century 
mathematicians and astronomeres less mentally taxing and prone to 
errors. Pocket-sized books of mathematical tables were also useful. Tables 
of logarithms allowed complicated multiplication to be reduced to addition 
problems. 

J1:~ Interactive 
Task: Simple multiplication problem 

Figure out how many days old you are, based on how many years. 

Tools: A large simplified model.of Napier's Bones with three moving pieces, 
graphic representation for the rest of the set. 

J1: $3 Visuals 
-The Octagon Room 
-15th Century Star Chart 
-Kepler's Rudolphie Tables 
-Kepler's Calculations 



On One Hand ... I Exhibit Worksheet 

Display Case 
Artifacts: Napier's Bones 

Universal equinoctail dail wI compass 
QuadrantFrench Pocket Calculator 

"Tables of Logarithms 1/6" 
Tables De Sinus Tangentes et Secantes 
Electrical Tables and Memoranda 
Molesworth's Pocket Book of Engineering Formula 
Day's Ready Reckoner and People's Calculator . 

Set of Pocket Drawing Instruments 
Rabdologiae 
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On One Hand ... / Exhibit Worksheet 

IF' Jl TaX Assesor 
Heading: Leadbetter's Slide Rule and Measuring Devices / Circa 1750 

Dialogue: "Hey, how much tax do lowe?" 

"Hold still my ~ood man. I'll tell you in a moment!" 

Story: In the 1 7th century the English government set up an efficient system for 
collecting excise taxes on ale and wine. The scientific tax assesors 
developed slide rules to calculate the duty owed on a stock of liquor. These 
slide rules gave the amount of ale or wine contained in a keg based upon 
its construction, external dimensions, and the depth of the liquor in the 
keg. The tax levied on alcohol was not very popular, and led to many 
political clashes. 

IF' ~ Interactive 
Task: Figure how much tax to charge the Tavern Owner based on the amount of 

rum he has sold. 

Use the tools to measure the volume of rum in the barrel, vs. the total 
volUme of the barrel, and plug those numbers in on the slide rule to figure 
the tax. 

Tools: Rum Barrel (free standing or half round mounted to the panel) 

Semi-fixed dip stick with pre-painted wet mark 

Tape measure (fixed to the barrel) 

Simplified slide rule (mounted to panel) 

Visuals 
Various Etchings (Holgarth) 



On One Hand ... I Exhibit Worksheet 

Display Case 
Artifacts: Leadbetter's Slide Rule 

Gauging Rod 







On One Hand ... / Exhibit Worksheet 

CG Jl Dry Goods Clerk 
Heading: Webb Adder / Circa 1890 

Dialogue: "Hey son, check around to see how many beans we have left!" 

Story: The Webb Adder was useful for counting stock. Though it could only add, 
it was faster and more accurate than hand tabulation. The idea of using a 
stylus to advance gears to perform addition dates to 1642 when the French 
mathematician Blaise Pascal invented a calculator called the Pascaline. 
Many miniturized mechanical calculators built for the pocket operated on 
similar principles. 

CG ~ Interactive 
Task: Take inventory of the ages of people in your family, classroom, or group 

you are with today. 

Enter each of the ages seperatly without counting. 

Tools: "SEE" adder 

Diagrams and visuals of how the "adder" works 

TIlustrations of various groups of people and there ages 

Visuals 
Photo-details of mechanical calculators 



On One Hand ... I Exhibit Worksheet 

CG~ Display Case 
Artifacts: Webb Adder 

Brical Pocket Adding Machine 
IBM Hexadecimal Adder 
SEE Calculator 
The Addist 
Golden Gem Adding Machine 
Golden Gem Calculator 
Addiator 
Totalisateur 
Calcumeter 
Adding Machine 



.. 





On One Hand ... / Exhibit Worksheet 

IBl n Engineer 
Heading: Engineer's Slide Rule / Circa 1940 

Dialogue: "How many people will this elevator hold before the cable snaps?" 

Story: The slide rule (or "slip stick" as it was nick-named) was the constant 
companion of engineers and scientists through the 1960's. It was designed 
to make the complicated calculations often required in engineering much 
simpler. However, it took to use well, and its accuracy was limited. by its 
size and the fineness of its graduations. Slung from the belt, or stuck in 
the pocket, the slide rule was the mark of a serious scientist. 

IEI ~ Interactive 
Task: Simple multiplication problem 

Tools: Slide Rules and' diagrams to show how to use them 

IEI $3 Visuals 
• Eugene Dietzgen Co. Catalogue 
• Keuffel & Esser Co. Catalogue 
• Phot-details of . 



On One Hand ... / Exhibit Worksheet 

J]l ~ Display Case 
Artifacts: Flight Plan Calculator 

Circular Price Calculator 
Otis King's Pocket Calculator 
Calculex Patent Circular Slide Rule 
Dietzgen Redirule Slide Rule 
Radio Communication Slide Rule 
Fowler Universal Slide Rule 
Hockey's Secret Code Maker & Decoder 
Trigonometric Slide Rule 
Calculigraphe 
Hydrocalculator 
Ohm's Law Calculator 
Harvard Project Physics 
Decibel Slide Rule 
Reactance Slide Rule 
Circular Concise Slide Rule 
Date Slid Rule 
Circular Slide Rule 
Gunter Rule 
Calculex 
The "Unique" Log-Log Slide Rule 
Biomate 
Boucher's Calculator 
The Mechanical Engineer 
Brass Sector 
Brass Dividers 
Map Measure 
Map Measurer 
Horse Meter 
Musketry Rule Model of1918 
Pocket Planimeter 
Probability of Destruction Calculator 
Le Prompt Calculateur Des Arts Industriels et du Commerce 
Vector Type Log-Log Dual Base Speed Rule, Model N 4 T 
IBM Machine Load "Computer" Slide Rule 
Pocket Set of Drawing Instuments 
Hurter & Driffield's Actiniograph 

(Misc.) 
Gunner's Sight 

(Books) 
The Slide Rule 
Eugene Dietzgen Catalogue 
Keuffel & Esser Co. Catalogue 









On One Hand ... / Exhibit Worksheet 

IT n Rally Racers 
Heading: Curta Calculator / Circa 1950 

Dialogue: ''We've gone 58 miles so far. How are we doing?" 

"Too fast... I figure we should ·have only g:one 421 Better ease up for a bit." 

Story: The Curta Calculator's rugged design and accuracy made it a favorite of 
car rally 1"aCerS who had to calculate the rate of their travel very percisely. 
Built with the percision of a fine watch, the Curta was the last word in 
mechanical pocket calculators. When electronic calculators became 
available in the 1970's the company soon went out of business. 

IT~ Interactive 
Task: Simple currency exchange problems. 

Calculate equivalents of a given amount in U.S. dollars of various 
denominations from around the world by plugging in the exchange rate, 
and cranking the curta the right number of times. 

Tools: The curta (motinted in such a fasion that it may be used, but not harmed), 

teaching diagrams (to show how to use it), 

and several problems to solve. 

Visuals 
Photo-details of inside of Curta 



On One Hand ... / Exhibit Worksheet 

IT ~ Display Case 
Artifacts: Curta 

Baby Calculator 
Addometer 
VEOPAD 
Pocket Arithmograph 
EXACTUS 
The Adding Pencil 
B.U.G. Calculator 







On One Hand ... / Exhibit Worksheet 

~Jl Student 
Heading: Student's Novus / Circa 1976 

Dialogue: "Let's see ... If I got 2 hits last night in three at bats, that brings my batting 
average to ... " 

Story: Dureing the mid-1970's inexpensive electronic pocket calculators became 
widely available. Students use such pocket calculators b help them with 
their homework, as well as many other every day calculations. 

~~ Interactive 
Task: Compute a series of batting averages base on available data. 

TooJs: The Student's Novus 

Step by step diagrams showing which keys to press etc. 

Visuals 
Photo-details of PCB's &IC's 



Artifacts: 

On One Hand ... I Exhibit Worksheet 

Display Case 
Bowmar MX70 Memory Calculator 
HP-55 
HP-65 
N ovus 650 Fixed Point Calculator 
Sinclair Cambridge Memory Calculator 
Sinclair Sovereign Calculator 
TI SR-50 Calculator 
TI- 2500 Datamath Electronic Calculator 
MX1 00 Scientific Brain 
Time Watch Calculator 
Casio Minicard fx-48 Scientific Calculator 
LC-78 Electronic Card Calculator 
Elsi-mate EL-835 
Wizard of Wine 
Stanley Calculator 
HP-4ICX· 
HP-71B 
HP-12C 
HP-Ol 
HP-35 
HP-41C 
Casio FX-7000G 
Casio DC-lOO 
Casio DC-500 
Casio TH-IO 
Casio SL-760 
PD-lOO 
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On One Hand ... / Exhibit Worksheet 

JK ~ Electronic Calculators 
Heading: None circa 1970's -1980's 

Dialogue: None 

Story: "Cheap" & "Available" 

JK ~ Interactives. 
Task: All will include a descriptive paragraph or two along with diagrams to 

help the visitor complete a series of complicated computations. 

Tools: HP-35 Scientist / scientific computation (power and programability) 

HP-12C Banker / interest computation 

HP-41 CV Astronaut / space shuttle navigation problem 

HP-71B Serveyer / surveying computations 

Misc. others / testine: accuracy etc. etc. etc. 



POCKET COMPUTING EXHIBIT 

Descriptive Outline 

I. Overa 11 Story 
A. Advantages and Needs 

1. convenience 
a. on-the-spot computing 

2. labor saving 
a. accuracy 
b. time-saving 

B. Diverse Users 
1. specialized 

a. inexpensive 
C. Di verse types 

1. different technologies 
a. different conceptual bases 

i. large concepts in small packages 
D. History and Trans-Cultural Themes 

1. used throughout history by virtually every culture 
a. fundamental to civilization 

E. Improvements 
1. increased power 
2. decreased cost 

II. Overall Structure 
A. Two types of areas 

1. Users scenes 
a. backbone of exhibit 
b. series of nine scenarios 

i. wI collection of similar technologies and 
periods 

a) simple dip1ays of artifacts 
ii)historica1 stories 

2. Experience Cells 
a. large mOdels of operation 
b. tie in with social stories 



III. Users scenes 
A. Nine scenarios of users of pocket calculators throughout the 
ages. 

1. containing the artifacts, the pockets, and other 
paraphenalia enhancing the creation of the atmosphere in 
which device was used. 

a. Shepherd's clay beads, c. 500 B.C. 
b. French Baker, Jetons, c. 1400A.D. 
c. Chinese Silk merchant's abacus, c. 1500 A.D. 
d. Astonomer's Napier's Bones and Log Tables, c. 1630 
e. Tax Assessor, slide rule, c. 1700 
f. Clerk's mechanical adder, c. 1890 
g. Engineer's slide rule, c. 1940 
h. Car racer's Curta, c. 1950 
i. Student's Novus, c. 1976 

B. Stories 
1. People who use pocket computers 

a. why need, how helpful? 
2. Diversity of uses 

a. specialized devices 
C. Comments 

1. Keep presentation simple 
a. little text 
b. let scenarios speak for themselves 

i. communication through design 
2. accessible and entertaining to all visitors 

a. immediately communicative 
b. but detailed enough to interest "experts" 

D. Scenarios accompanied by small collection of thematically rela 
ted artifacts. 

1. Though primarily collection, give some brief text on 
overall aspects of technology, and specific artifacts, 

including historical/cultural importance 
2. Between Clay Beads and Jetons 

a. anciet calculating and recording devices 
i. Roman styli 
ii. Korean Bones 
iii. Tally Sticks 
iv. Greek gears 

3. W/ Abacus 
a. Abaci 

1) brief story 

i. from different cultures different designs 
different quality 

4. W/ Astronomer 
a. Pocket books and Tables 

i. Tables De Sinus Tangentes et Secantes 
ii. Logarithm Tables 

b. astrolab 



5. WI Tax Assessor's Slide Rule 
a. analogue devices 

i. dividor 
ii. sector 
iii. quadrant 
iv. Gunter's rule 
v. Cal culex 

6. WI Dry Googs Clerk 
a. mechanical, digital devices 

i. adding pencil 
ii. Golden Gem 
iii. Totalisateur 
iv. B.U.G Calculator 
v. Exactus 
vi. Webb Adder 

b. Story: digital calculation 
i. tie in with story at Giant Pascal gears 

7. WI Engineer 
a. other specialized analog devices 

i. slide rules 
a) nuclear destruction calculator 
b) musketry rul e 
c) pilots dead reckoning rule 
d) one or two others 

11. planimeter 
iii. map measurer 

b. slide rules of every shape and for every purpose 
i. analog computation 
ii. adaptability 

8. WI Novus 
a. early electronic pocket devices 

i. Bowmar 
i i. T I Datamath 
iii. Casio Elsimate 

b. calculators, watches, etc. 
i. ever smaller, ever more powerful 
ii. many specialized adaptations 

IV. Experience cells 
A. Large-scale model of operating principles behind essential 
technologies. 

1. briefly discuss mathematical principles behind 
a. over-blown scale reflects large concpets in small 
packages. 

B. In addition to technological aspect, talk about conceptual 
basis, and historio-cultural position 



1. Giant Abacus 
a. moved beads representing units 
b. old, simple, digital (circa 1300 in China) 

i. but very efficient 
ii. historical origins 

1) counting beads/boards of Romans 
2) earlier in middle Asia 

iii. used by many cultures 
c. still widely used in Eastern Asia 

i. essential to arthmetic system 
ii. video of Japanese school children using 

2. Giant Napier's Bones 
a. moved rods to set up problem, then head-hand figuring 
b. simple multiplication tool, manipulable table 
c. popular in Europe among scientists and mathematicians 

i. portrait of Napier 
1) liS 1 i ppery errors II quote 

3. Giant Slide Rule 
a. moving scales performed arithmetic 
b. used Napier's concept of logarithms to perform 
multiplication by the addition of lengths. 

i. analog computation 
c. very widely used and adapted in western culture 
through the 1970's 

i. Historical origins 
1) Ga1i1eo's rule? 
2) Gunther's rule 
3) sucessive developments 

4. Giant Pascal gears 
a. moved gears, teeth representing numbers 

i. performed arithmetic digitally 
b. allowed mechanical carry 

c. principle used in many mechanical calculators 
thereafter 

i. historical origins 
1) Pasca1ine 

5. Blow up of chip from HP-35 
a. no moving parts, electronic, moved electrons 

i. very fast 
b. microprocessor allowed hand-held electronic 
calculation 

i. Intel 4004 
ii. became progressively cheaper 
iii. virtually replaced all other devices except 
abacus 

c. need for handy powerful calculator 
i. video of Bill Hewlett 

d. many electronic devices operating 
i. showing varied uses and usefulness 



4. 

C. Comments 
1. very "visitor friendly" area geared toward novice 

a. highly interactive 
b. videos 

2. historical themes to mesh with Users Scenes by giving 
backgound 
3. discuss general properties of technology 

a. above two points re-enforced in Collection Cases 

VI. Specific Ideas 
A. In cases of older technologies relate to those currently used. 

1. e.g.: "Today pilots use electronic calculators that are 
specially modified for in-flight navigation. 
B. At end of exhibit have visitor comment 

1. "What would you like to have in your pocket in ten years?" 
a. Or, contest to guess the pocket calculator will be in 
ten years. 

C. Emphasize that human hand is first pocket calculator. 



POCKET COMPUTING EXHIBIT 

Descriptions of User Scenes 
with text 

Objects Text 

[Shepherd/Clay Beads, Circa 500 B.C.] 

Sheepskin shepherd's 
garment, leather sachel, 
crook, shears, pasture 
w/ sheep backdrop "Ancient shepherds placed a clay bead or 

pebble in their sachel for each sheep they let 
out to graze in the morning. By comparing the 
number of beads to the number of sheep at the 
end of the day they could tell if they had 
lost any sheep. Using pebbles to represent 
numbers was the basis of calculating for many 
early civilizations." 

[French Baker/ Jetons, Circa 1400 A.D.] 

Baker's Apron and hat, 
Loaves of bread, board w/ 
flour and jetons Instead of pebbles, a French baker from the 

middle ages used copper coins called "jetons" 
(from the French verb "jeter" meaning lito 
throw") to calculate the price of his wares. 
The coins were moved about a set of lines 
representing different values of ten (ones, 
tens, hundreds, etc.). Since Roman numerals 
then used were difficult to calculate with by 
hand, jetons allowed him to find the price of 
many loaves and calculate change much faster. 

[Silk Merchant/ Abacus, Circa 1450 A.D.] 

Bolt of silk, Chinese 
jacket, scroll, bazaar 
backdrop "A miniturized abacus was useful to a 15th

century Chinese silk merchant on his travels 
to help quickly calculate the price of 
quantities of silk. An improvement on loose 
pebble and coin counters used since ancient 
times, the wire-strung bead abacus originated 
during the Middle Ages in the Middle East and 
from there spread east. In many parts of the 
world abaci continue to be widely used." 

[Astronomer/Napier's Bones, Circa 1630 A.D.] 



Antique telescope, sextant 
star charts, dividers, 
compasses, book of trig 
tables, appropriate jacket, 
observatory backdrop "Invented in the early 1600 ' s by the Scottish 

mathematician, John Napier, 'Napier's Bones 1 

made the lengthy calculations of 17th-century 
mathematicians and astronomers less mentally 
taxing and prone to errors. Pocket-sized books 
of mathematical tables were also useful. 
Tables of logarithms allowed complicated 
mulitplications to be reduced to addition 
problems. II 

[Tax Assessor/ Leadbetter's slide rule, Circa 1750J 

Long tweed overcoat, ledger, 
Quill pen, antique pen knife 
and ink well, ale cask, tape 
measure, dock backdrop II In the 17th century the Engl i sh government 

set up an efficient system for collecting 
excise taxes on ale and wine. The scientific 
tax assessors developed slide rules to 
calculate the duty owed on a stock of liquor. 
These side rules gave the amount of ale or 
wine contained in a keg based upon its 
construction, external dimensions, and the 
depth of the liquor in the keg. The tax 
levied on alcohol was not very popular, and 
led to many pol itical clashes. II 

[Dry Goods Clerk/Webb Adder, Circa, 1890J 

Sack of grain, etc. clipboard 
with stock ledger, clerk's 
vest, storage room backdrop liThe Webb Adder was useful for count i ng stock. 

Though it could only add, it was faster and 
more accurate than hand tabulation. The idea 
of using a stylus to advance gears to perform 
addition dates to 1642 when the French 
mathematician Blaise Pascal invented a 
calculator called the Pascaline. Many 
miniturized mechanical calculators built for 
the pocket operated on similar principles. II 

[Engineer/ Slide Rule, Circa 1940J 

Windtunnel model airplane, 
short-sleeved white shirt 
with horn-rim geek glasses 
and plastic pocket 



protector. "The slide rule (or "slip stick" as its was 
nick-named) was the constant companion of 
engineers and scientists through the 1960's. 
It was designed to make the complicated 
calculations often required in engineering 
much simpler. However, it took skill to use 
well, and its accuracy was limited by its size 
and the fineness of its gradations. Slung 
from the belt, or stuck in the pocket, the 
slide rule was mark of the serious scientist.'1 

[Rally Racer/ Curta, Circa 1950] 

Sport steering wheel, 
photo out front of car, 
dash board, driving gloves, 
rally jacket, log book. "The Curta calculator's rugged design and 

accuracy made it a favorite of car rally 
racers who had to calculate the rate of their 
travel very precisely. Built with the 
precision of a fine watch, the Curta was the 
last word in mechanical pocket calculators. 
When electronic calculators became available 
in the 1970's the company soon went out of 
business." 

[Pilot/ Navigation Rule, Circa 1960] 

Leather flight jacket, 
instrument panel, clouds, 
charts 

[Student/Novus, Circa 1976] 

Math text book, homework, 
baseball mitt, etc. 
book bag, Calculator 
games book 

"Specialized slide rules help pilots chart 
their courses, estimate arrival times, and 
calculate other aspects of their flight 
according to changing conditions." 

"During the mid-1970's inexpensive electronic 
pocket calculators became widely available. 
Students use such pocket calculators to help 
them with their home work." 



Venerable Bede's diagram 
of finger counting 

<title> 
Pocket Computing 

<primary text> 
Today we almost take pocket calculators 
for granted. Portable and convenient, 
people reach for them them to do 
everything from their math homework, and 
balance their checkbooks, to calculate 
the expected return on investments, and 
design airplanes and automobiles. The 
pocket electronic calculator widely used 
today is only about fifteen years old. 
However, for centuries people from 
virtually every culture have built small 
devices to carry with them to perform 
calculations on the spot quickly and 
accurately. 

<subtitle> 
The First Pocket Calculator 

<primary text> 
The human hand is the first pocket 
calculator. Indeed, that most number 
systems around the world are based upon 
groupings of five or ten suggests that 
finger counting often led to the 
development of numbers. Many cultures 
through histQry have used hands to 
calculate and represent large numbers. 

This diagram from the 8th centruy 
illustrates a system of advanced finger 
counting used in Europe during the Middle 
Ages. Numbers up to 10,000 could be 
represented by various positions of the 
fingers. The ancient Greeks and Romans 
are also known to have had finger 
counting systems. 

Can you represent your age on your 
fingers? Try the year of your birth. 

<title> 
THE ABACUS 

<subtitle> 
The History of the Abacus 



" 

Darius Vase 

<primary text> 
The abacus is one of the oldest 
calculating devices known. 

In its earliest forms the abacus was 
little more than a set of pebbles pushed 
about lines drawn in the dust or 
scratched on a flat surface. In fact, 
the English word "calculate" comes from 
the Roman word "calculus" meaning 
"pebble," and the word "abacus" derives 
from the Semtic word for dust, "abaq." 
Many ancient cultures from the Eygptians 
to the Romans calculated in this manner. 

<caption> 
This figure from a 4th century B.C. 
Grecian vase depicts a king1s treasurer 
using pebbles to calculate tribute. 
<primary text> 
In Europe during the Middle Ages abacus 
pebbles were replaced by metal coins. It 
was customary to give "nests" of new 
coins on New Years and dispose of the old 
coins in a river. At the same time as 
the Hindu-Arabic numeral system that we 
use today was introduced to Europe in the 
late Middle Ages the abacus faded from 
use in the West. 

The abacus as we know it today, a rack of 
beads strung on wires, emerged in the 
Middle East sometime during the Middle 
Ages. From there it spread to 
southeastern Europe and Asia, where 
different cultures modified it. It is 
still widely used in the Far East. 

The Chinese call their version of the 
abacus the "suapan," or "counting tray. II 
It has round beads and is divided length
wise into two sections. The top section 
is called "heaven" and contains two 
beads, each worth five units. The bottom 
section is "earth" and contains five 
beads, each worth one unit. The suapan 
was in use in China by the 1300 1s, and 
became widely popular in 1593 when the 
mathematician Chen Ta-wei published a 
book on abacus computation. 

The abacus was introduced to Japan from 
China. The Japanese made sharp edges on 
their beads, and used only one bead in 
"heaven" and four beads in "earth" to 



make operations faster. They called 
their abacus the "soroban." The soroban 
is still widely used in Japan everyday. 
School children are taught to use the 
soroban from a very young age, and it is 
essential to their notion of calculation. 

The abacus is such as integral part of 
Oriental culture that in China May 10 is 
Abacus Day. 

video of school competition <caption> 
Japanese school children engage in 
competitions to hone their skills on the 
soroban. 

<subtitl e> 
Using the Abacus 

<primary text> 
Each collumn of beads on the abacus 
represents a different power of ten. The 
first collumn represents ones; the second 
tens; the third hundreds, and so forth. 
The abacus is set at zero when all the 
beads are pushed as far from the center 
horizontal bar as they will go. To enter 
a number hold the abacus level in one 
hand and push the appropriate number of 
beads toward the center bar. For 
example, to represent the number 48, in 
the first collumn to the right push three 
of the bottom beads up toward the bar, 
and one of the top beads down (the top 
beads represent five units),in the second 
collumn push four bottom beads up. 

Can you represent your age on the abacus? 
How about the year of your birth? 

Addition is performed by entering a new 
number [get good description Japanese st 
yle] 

A problem like this was solved in ??? by 
??? How fast can you solve it on this 
pocket calculator? On the abacus? Time 
your self with the stopwatch. 

<title> 
NAPIER'S BONES 

<subtitle> 
"sl ippery errors quote" 



portrait of Napier 

Rabdologiae 

diagrams at each step 

<primary text> 
In 1617 John Napier, a Scottish baron, 
published a book describing a device to 
aid calculations. "Napier's Bones" were 
essentially a set of multiplication 
tables enscribed on rods so they could be 
repositioned in any order. They were an 
aid to pen and paper multiplication, 
division, and finding square and cube 
roots. Within a few years their use had 
spread among educated people throughout 
Europe and as far as China. Several 
improved versions were developed though 
the 19th century. 

<caption> 
John Napier, Baron of Merchiston, {1550-
1617} inventor of Napier's calculating 
bones, and the discoverer of logarithms. 

<caption> 
The Rabdololiae contained instructions on 
the manufac ure and use of Napier's 
calculating bones. Napier published the 
book shortly before his death at the 
insistance of his friend the Earl of 
Seton. 

<subtitle> 
Using Napier's Bones 

<primary text> 
Try this simple problem to understand how 
Napier's bones were used. Multiply 6 
times 458. 

- Position three rods along side the 
edge of the tray with the numbers 1-9 
written on it so that the number 458 
appears along the top of the three rods. 

- Read off the the digits of the 
answer by adding the numbers between the 
diagonal lines in the sixth row. 

the units digit is 8 
the tens digit is 4+0=4 
the hundreds digit is 3+4=7 
the thousands digit is 2 
so the answer is 2,748 

Notice that if the sum of the two numbers 
within the diagonals was greater than 9 
that you would have to carry a lover to 
the next digit place. Also, to multiply 
by a number with more than one digit, you 
would repeat this process for each digit 
and than add together all the results by 



[diagram of scale] 

hand, being sure to shift one decimal 
place to the left each time. 
The value of Napier's Bones is more 
apparant when you consider that at the 
time it was introduced even the most 
educated people generally only knew their 
multiplication tables up to 5 times 5. 

<title> 
THE SLIDE RULE 

<primary text> 
The slide rule is a simple analogue 
calculating device, that takes advantage 
of the principle of logarithms. The 
primary scales on a slide rule (marked c 
and D) are drawn in such a way that one 
can multiply or divide numbers very 
simply. 

To multiply two numbers you only need to 
know how to read the scales. 

Notice that you can at best only locate 
precisely a three digit number. Thus a 
quantity such as 10,547 would have to be 
estimated on the scale. 

To multiply two numbers slide the C scale 
so that the 1 mark or index as its called 
is above the first factor on the D scale 
below it. The result of the 
multiplication is read on the D scale 
below the location of the sceond factor 
on the C scale. 



OBJECT 

Early recording devices 

Roman Stylus 

English Tally Stick 

TEXT 

To perform calculations it is necessary 
to express and record the figures you 
which to work with and the results you 
wish to find. 

These styli were used by the ancient 
Romans to scratch numbers onto wax 
tablets. Though not as convenient or 
durable as our modern pen and paper, 
these tablets could be used to compute 
numbers on, and store important records. 

These notched sticks were used to store 
financial records in Britain until the 
19th century. The pattern of the notches 
represented a quantity of money. Large 
notches meant pounds, smaller ones 
shillings, and scratches pence. After a 
transaction was recorded the stick would 
be split in half down its length, and one 
half given to each party for their 
records. 

Painting of Parliment burningLegend has it that in 1834 when the large 
store of government tally sticks were finally burned in the stoves of 

the House of Lords the heat was so great that the whole building 
caught fire and the entire British Parliment was burned to the ground. 

Korean Calculating Bones 

Chinese Charater. 

Logarithm Tables 

Rods of bone, wood or ivory such as these 
were used in ancient China to aid 
calculation. The rods would be arranged 
in groups to represent numbers. A 
vertical rod meant 1, a horizontal rod 
meant 5. The rods above represent the 
number 627. In this way numbers were 
"written" down calculated in much the 
same way we write numbers on paper. 

The written Chinese characters for 
numbers took their form from the pattern 
formed by the rods when representing a 
number. 

Handy tables helped simplify 
calculations. In 1614 John Napier 
published his description of logarithms. 
The use of logarithms allowed lengthy 
multiplication and division problems to 
be reduced to more simple addition and 



Perhaps an interactive 
terminal 

subtraction problems. Since the 
derivation of a logarithm is a lengthy 
calculation, it was useful to have large 
tables of pre-calculated logarithms for 
many numbers. 

What are Logarithms? 

One way of writing 5x5 is 52. The two is 
ca 11 ed the "exponent ", and means that 
five, the "base" is to be multiplied to 
i~self 2 times. Similarly 3x3x3x3 equals 
3. You will notice an interesting 
property of performing arithmetic with 
exponents if you look at what happens 
when you multiply two exponential 
quantities that have the same base. 
Consider: 

45 x 42 = (4x4x4x4x4) x (4x4) 
= 4~4x4x4x4x4x4 
= 45+2 . 
= 4 

Notice that if the bases are the same the 
new exponent is the sum of the two factor 
exponents. Therefore, if you can express 
factors etc. etc. 

The logarithm of a number is the exponent 
to which a base number must be raised to 
equal the original number. For example, 
in base 10, the logarithm of 100 is 2, 
since 10 raised to the power 2 equals 
100. Similarly, the log of 4 in base 2 
is 2 since 2 raised to the power 2 equals 
4. Things become a bit more complex when 
the number is not an even power of the 
base. For instance the log of 35 in base 
10 is 1.544068044. 

[I think perhaps an explanantion of 
logarithms is beyond the scope and 
purpose of this exhibit.] 

AstrolableAstrolabes, such as this Arabi 
c example, were used for many 
astronomical calculations. The upper 
dial has points indicating the positions 
of stars, while the lower plate has an 
etched map of the heavens on it. By 
manipulating the dial many values, 
ranging from the user's position, to the 
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HP-12C 

position of the sun and stars on any day 
of the year, could be found. 

By adjusting the pivot point the 
proportional relationship between the 
width of the points at opposite ends 
could be adjusted. 
When you entered the Museum you may have 
seen the Whirlwind computer calculate how 
much money an Indian might have today if 
he had invested the $24 he received for 
the sale of Manhatten Island in 1626. 
The Whirlwind computer took up a whole 
floor in a building and had to be 
programmed to solve the problem. Today 
you can solve this same problem with a 
few keystrokes on this HP-12C calculator. 
The HP-12C is a special financial 
calculator. 

INSTRUCTIONS 
1) Enter the number of years interest 
will accrue: 

1986 - 1626 = 360 years 
So, enter 360 followed by the key marked 
lin. II 

2) Enter the interest rate: 
Enter 6 followed by the key marked IIi II. 

3) Enter the ammount received for the 
sale of Manhatten: 
Enter 24 followed by the key marked IICHS II 
and then the key marked lip VII. 

4) Press the button marked IIFVII. In a 
few seconds the amount of money the 
Indian will now have in the bank will 
appear. 

The amount of money is so large it runs 
off the calculator's display. So the 
calculator expresses it in scientific 
notation. To find how much the number 
displayed is shift the decimal as many 
places to the right as the number 
appearing on the right of the display. 
The Indian would now have: 
$30,925,920,000.00. Over 30 billion 
dollars! 

Using the 12C you can easily determine 
how long it will take you to save enough 
money to purchase soemthing you wish, or 



Nixdorf MK-3000 

to find how much money you will have by a 
certain date. 

Suppose you wisk to by a baseball glove 
that costs $12.00, and you deposit $2.00 
of your allowance each month in an 
account that earns 10 percent interest 
each month. To find out how many months 
it will take you save up enough to buy 
the glove follow these instructions. 

1) Enter the amount you wish to save: 
Press 12 and then the key marked "F V". 

2) Enter the ammount you will deposit 
each month: 
Press 1, followed by the key "CHS" and 
then the key "PMT". 

3) Enter the interest rate: 
Press 10, and then the key marked "i". 

4) Find the number of months you will 
have to save to buy the mitt. 
Press the key marked "n". In a moment 
the answer will appear. 
Because your account earns interest it 
will take you only 5 months to save $12! 

Try a problem of your own. 
Micro-electronics have made calculators 
useful for many new tasks. This device 
can translate simple phrases from one 
language to another. To find out how to 
say hello to a friend in another language 
Press the button marked "clr". First, 
set up the languages you wish to use. 
Press IIfll then "stp" to change the first 
language. Continue pressing "stp" until 
you reach the language you wish to 
translate to, then press "bs" and press 
"stp" until the language you wish to 
translate from appears. Type in the word 
you wish to translate, and then press 
"def". You can examine the phrases in 
the ca 1 cul at or I s memory by press i ng "? II 
after a word, and then "stp" to see 
related expressions. Pressing "def" 
translates the phrase. Press "clr" after 
each translation. Notice that the 
phrases you can use are simple and 
1 imited. 



HP-35 

The Nixdork MK-3000 was produced in the 
late 1970's by Nixdorf, the German, 
Computer manufacturer. A wide range of 
cartidges were available for translating 
between many different languages, 
creating an electronic filing system, and 
performing numerical calculations. 

The HP-35 was the first scientific pocket 
calculator. It could very quickly and 
accurately perform many of the functions 
for which slide rules were used and that 
were too complicated for simple four
function calculators such as the earliest 
pocket electronic models. Since it was 
designed to perform the same functions as 
a slide rule, it was nick-named the 
"electronic slide rule." 

One immediate advantage the HP-35 had 
over the slide rule was that it was much 
more accurate. You may recall how you 
had to approximate the location of a four 
digit number on the slide rule. You can 
enter an eight digit number on the HP-35. 

Prior to the HP-35 to use a find the 
vaule of a function such as the sine of 
an angle required looking it up in a 
table, or being satisfied with the 
limited accuracy of a slide rule. The 
HP-35 could instantly calculate the sine 
of a number to eight decimal places. The 
same is true of other trignonmetric 
functions and logarithms. 

Try the HP-35 

Find the sine of an angle. 
Enter the number then press "SIN". 

Find the logarithm of a number in the 
same manner. 

Try multiplying two numbers. Notice that 
if you try to enter the problem in the 
way you are used to writing it that you 
cannot find the = key or the answer. 
This is because Hewlett Packard 
calculators use a form of notation called 
"reverse Polish notoation." You must 
enter the two numbers and then the 
operation to be performed on them. for 
example: to mutliply 2 times 3, press 2 
then the ENTER key then press 3 then the 
X key, the answer will then appear. 
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PO-100 

Now that you know how to use the HP-35 
try a problem that will show you its 
power. 

The fastest mental calculators in the 
world can compute the 13th root of a 100 
digit number in less than two minutes. 
With the HP-35 you can perfrom this feat 
in a fraction of the time. 

To indicate you want the 13th root taken 
enter 13, then press the l/X button, and 
press ENTER. Now enter a 100 digit 
number: first enter 10 digits, then 
press the EEX key ,nd enter 10. Now 
simply press the X key. The 13th root 
of your number will appear almost 
instantly. With an electronic calculator 
you can beat the fast metnal calculator 
in the world! 

Even thought the HP-35 is much more 
accurate than a slide rule, it too 
estimates answers beyond its capacity 
while calculating. For example, we know 
that {4/3}X3=4. But try this problem on 
the HP-35. In dividing 4 by 3 the 
calculator does not round off the tenth 
digit when the quotient runs over ten 
digits. Therefore, when you multiply by 
three again you come up short. 
Try this test problem on some of the 
other calculators on display. 

We have seen that some of the earliest 
aids to calculation were little more than 
means of recording quantities. Today 
micro-electronic circuits allow us to 
store large amounts of information in our 
pocket. 

This PO-100 is manufactured by 
Selectronics. In addition to being a 
four function calculator that can convert 
directly into metric quantities, it can 
store up to 2,040 characters of text in a 
filing system, enough for up to 100 
addresses. 
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Checklist 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Chinese suapan 
beads, wood, metal 
c .• 1900 
Peabody HJseum of Salem 
catalogue #: E6537 

Jettons 
metal 
c.1600 
Bell Collection 

Japanese Soraban 
beads, plastic, wood 
c. 1980 
Bell Collection 

Rabdolcxriae, book 
paper, skin 
c.16l7 
Bell Collection 

Napier's Bones 
wood 
c.1700 
Bell Collection 
catalogue #: B27. 79 

Jl;so. 

PiOCfJ· 

French Pocket Calculator 
wood, paper, metal .JtSOOO I 

c.1800 lP 
JJ:M Gallery of Science and Art 
catalogue #: 61 

=~~=es, book $scPD . 
c.1839 
IBM Gallery of Science and Art 



cx::MEUTERS m YOOR lOCKE!' 
Checklist/page two 

8. Glmter's Rule )\00 ' wood 
0.1800 
'!he COn'plter Museum 
catalogue #: XB4l.79 

9. Portable sun Dial tSOoO' metal 
0.1800 
Harvard university 

10. Drawing Instruments 0°0, 
metal, ivory, skin 1f\ 
0.1850 
Bell COllection 
catalogue #: B224.82 

I!. Tax Assessor's Slide Rule 
~-zS0' wood 

0.1850 
'!he COn'plter Museum 
catalogue #: XBl08. 80 

12. Gauging Rod ~ /0· wood, metal . ~'? 
0.1850 
Bell COllection 
catalogue #: B208.82 

13. Proportional Conpass r::oO ' 
metal ~~ 
0.1900 
Bell COllection 

14. Sector ~ScP' metal 
Bell COllection 
catalogue #: B304.84 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

Circular Slide Rule 
metal, paper, lacquer 
c.1850 
'!be Cc:mputer M.lSeUm 
catalogue #: n31.82 

Boucher's calculator 
glass, metal 
c.1890 
'!be Cc:mputer M.lSeUm 
catalogue #: n 73.83 

Artillery Officer's Slide Rule 
metal 
c.1915 
Bell Collection 
catalogue #: B83. 86 

Actinograph 
wood, paper, metal 
c.1910 
Bell Collection 
catalogue #: 306.84 

Webb Adder 
metal 
c.1900 
The Cc:mputer Museum 
catalogue #: X522. 84 

Morland calculator 
metal, silk, animal shell 
IBM Gallery of science and Art 
catalogue #: 66 

Addin;J Pencil 
metal 
c.1950 
Bell Collection 



CXMUr.ERS m YOCR :roa<El' 
Checklist/page four 

22. French calculator ~' 
metal' 
0.1930 
IBM Gallery of science and Art 
catalogue #: 65 

23. Troncet Totalisteur ~O. 
metal, apper, bone, wood 
0.1930 
Bell COllection 

O· 
24. Brical Adder ~\V 

metal 
0.1930 
'!he Ccmplter MilseUm 
catalogue #: JO.3.S0 

25. Ie Prcmpt calculateur j34J ' 
metal, paper, plastio 
0.lS63 
Bell COllection 
catalogue #: B233.S4 

26. Golden Gem Adding Machine ~4J' metal 
0.1940 
Bell COllection 
catalogue #: B266.S3 

27. B.U.G. calculator 0°-
metal it? . 
0.1950 
Bell COllection 
catalogue #: m3l. so 

2S. Addiator "'" metal ~-z.'b . 
0.1925 
'!he COltpIter MilseUm 
catal9gUe #: XD125. SO 



cnn:umRS m YOOR l:OCKEI' 
Checklist/page five 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

Baby calculator 
metal 
c.1929 
'!he computer Museum 
catalogue #: X2l3. 83 

Model N4T Vector-Type Log Log Dlal-Base Speed Rule 
plastic, metal 
c.1950 
'!he computer Museum 
catalogue #: X695.85 

. otis King Slide Rule 
metal, plastic 
c.1930 
'Ihe canputer Museum 
catalogue #: X2l4. 83 

Unique Log-Log Slide Rule 
wood, ivory, metal 
c.1940 
Bell COllection 
catalOgUe #: B352.86 

Dietzgen Redi.rule 
plastic 
c.1940 
'Ihe canputer Museum 
catalogue #: X33l.84 

Miniature Slide Rule/Tie Clip 
plastic 
c.1970 
MIT Museum 

pilot's Slide Rule 
plastic 
c.1950 
'!he computer Museum 
catalogue #: X55. 82 
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36. Probability of Destruction calculator 
plastic, metal 
c.1960 
'!he computer Museum 
catalogue #: X677.86 

37. ~ Project Ihysics Multiplication/Division Slide Rule ~50 ' 
plastic 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

c.1960 
'!he COmputer Museum 
catalogue #: X621.85 

curta 
metal, plastic 
c.1960 
'!he COmputer Museum 
catalogue #: S#25 

Leather Case for curta 
Bell Collection 

HP-41CX 
'!he COmputer Museum 

~500' 

¥\OO· 

~?:p0' 

SHARP card calculator EIr900 !f y. 
'!he Computer Museum 

casio fx-700OG ~\SO' '!he COmputer Museum 

HP-12C ~1O' 
'!he Computer Museum 

Bowmar MXlOO scientific Brain j\'PcO · metal, plastic 
1971 
'Ihe Computer Museum 
catalogue #: X754.86 
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45. HP-Ol calculator Watch with styllus 
gold, metal, plastic 

46. 

1977 
Hewlett-Packal:d Cc:mpany 

casio C-80 calculator Watch 
plastic 
1980 
casio, Inc. 

47. casio Electronic calculator 'lH-10 Ctystal cal ~ 6:P . 
plastic, metal 

48. 

49. 

c.1985 
'!he Ccmp.1ter MJseum 

SIt-800 Film cam 
plastic, metal 
c.1984 
'!he Ccmp.1ter MJseum 

HP-18C Business Consultant 
metal, plastic 
c.1985 
'!he Ccmp.1ter Mlseum 

50. casio BC-300 Business calculator ~ Sa, 
metal, plastic '""' 
c.1986 
'!he Ccmp.1ter MJseum 

it<"'O • 51. selecrronics PD-100 Personal Directory ~ ~ 
metal, plastic 

52. 

c.1986 
The Ccmp.1ter J.llseUm 

ShaJ:p Sparky WN-30 
plastic 
c.1986 
'!he catputer J.llseUm 
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Checklist/page eight 

:v 53. TI-2500 Datamath ~\D plastic 
1972 
The Conp.rter Milseum 
catalogue #: X217. 83 

54. Wizard. of wine ~SO· plastic 
c.1984 
Bell Collection 

55. Shal:p Elsi Mate EV429 ~ \U\) \ 
plastic, metal 
The COnp.rt:er MUseum 
c.1982 

56. Qi-601 casio-Mini Electronic calculator \?~O. 
plastic, metal 
c.1972 
casio, Inc. 

57. HP-35 

~S'CP' plastic, metal 
1972 
'!he Computer Milseum 

58. Shal:p EV805 ~\tP, metal, plastic 
1973 
The Computer Milseum 

59. HP-65 \\\0°' metal, plastic 
1974 
The Computer Museum 
catalogue #: X752-86 
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60. 

61. 

62. 

Novus 650 Mathbox 
plastic, metal 
c.1975 
'!he COnplter Museum 
catalogue #: X302.83 

Sinclair sovereign 
metal, plastic 
c.1975 
'!he COnplter Museum 
catalogue #: X654. 86 

casio-Mini card LC-78 
metal, plastic 
c.1978 
Bell Collection 
catalogue #: GB#33. 79 
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Calculating Machines 

Man~s attempts to devise aids to calculation 

are almost as old as man himself 

Derek de Solla Price 

Yale University 

Calculating machines, the modern electronic marvels 
that seem to run as deep as a man's mind and much 

faster, have a history that is almost as old as man himself. 
It may at first seem paradoxical that anything so exquisite
ly sophisticated as a combination of the most complex 
machines that have ever been built and the most abstruse 
mathematics that have ever been thought could have roots 
that run back beyond the last few decades or the last few 
centuries. Yet the truth is that this combination of in
strument building and rational mathematical thinking is 
a continuous thread that runs through the whole of 
recorded history. It is a thread that links together and 
dominates the pattern of scientific thought and 
technological development throughout recorded history, 
a thread that traces back to perhaps even before man had 
invented the written word that gives us this record. 

Man the Maker, craftsman, and Man the Thinker, the 
math~matician, are often conceived as opposite poles of 
human action ; we shall show through this history how 
the coming together of these two extremes has given us 
so much of the modern world. We shall show that 
although the most direct product of this combination has 
been the calculating machine, other offshoots have 
dominated the growth of pure sciences like mathematics, 
astronomy, and physics, technologies such as those of 
clockwork and all sorts of engines, the arts of business 
and finance, and philosophies and theologies that have 

AOOAOOEILI 
-Jc.x.;tr ®"" 
A CENTURY OF ELECTRICAL PROGRESS 

To commemorate the one-hundredth year of the 
IEEE, we present this review of the history of pre
elec tronic calculation . Probably few engineers are 
aware of the story Derek Price tells here, and so it may 
be appropriate-especially in this centennial year
to consider the origins of our profession. Computer 
engineers , as it turns out, have intellectual forebears 
stretching back to furthest antiquity . In a distant mir
ror , we see reflections of ourselves. Though we work 
in metal , oxide, and semiconductor rather than stone, 
wood, and bronze, the task remains fundamentally the 
same-sc ience and technique, mind and hand , have 
jOi ned forces since the earliest times to build in
struments for counting and measuring . 

Consider this: one day 80 years before the birth of 
Chris t a group of men-today we would call them a 
deS ign team-met to plan and build a machine that 
would enable its users to accurately predict celestial 
motions. Like their distant successors, before they 
were done they had solved problems-in both elegant 
and inelegant ways-and produced a working model. 

-Ed. 
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helped man to understand the world and live in it use
fully and successfully. 

Prehistoric man, primitive man, and the 
earliest historical records 

The coming of the art of writing, about 3000 BC in 
the ancient river-valley civilizations of Egypt and 
Mesopotamia, marks the technical boundary between 
prehistoric and historic man. Two things are, for our pur
poses, peculiar about this milestone in civilization-first, 
writing seems a piece of technology extraordinarily late 
in coming, and second, it seems closely linked to a 
dp.velopment of the arts of mathematics that preceded it. 

It is late because by that time man had already traveled 
far along the road of civilization. He had learned to make 
clothes and utensils, weapons, and tools; he built good 
houses and well-organized cities. He could' tan leather, 
dye cloth, work stone, and smelt metal and cast it. He 
could irrigate land, plan for economic plenty and for 
famine, and invent gods and question them about the 
future. Even a cursory look at the artifacts of prehistoric 
men-their tools, pots, jewelry, and the surviving foun
dations of their cities-will immediately convince one that 
even at this early age there were fme craftsmen and a deep 
tradition of handiwork. 

It is peculiarly linked with mathematics because in all 
cultures we find that a large number of the earliest pieces 
of writing that have come down to us are accounts listing 
various numbers of various objects. They specify so many 
men, women, and children, so many jars of wine and beer 
and oil, this number of pitchers and plates, that number 
of bricks and planks, that volume of earth to be dug, this 
number of hours to be worked, and so on. These "shop
ping lists" of the temples and the official treasuries are 
so common that it almost seems as if writing was invented 
to aid the keeping of such records rather than to record 
man's thoughts and literature. Certainly we can tell from 
the earliest lists that by the time they were written down 
on clay tablets, man had already long practiced the art 
of keeping accounts, of adding and subtracting and 
operating with numbers. The earliest signs for numbers 
are, after all, so much more simple than those for words 
and other concepts that it seems clear men must have writ
ten numbers long before they wrote other things. 

These facets of the development of prehistoric and early 
historic man can still be seen among primitive peoples 
today. In nearly all preliterate cultures there exist 
methods, some of them very ingenious, for recording 
numbers of things and keeping accounts of them. Notches 
cut on a stick or a bone have been used from the earliest 
times to represent numbers of people, cattle, or days. 
Lines drawn in the sand or scratched on a discarded pot
sherd have served the same purpose. Our modern word 
"calculate" comes from the diminutive form of the 
Latin calx-a stone-and refers to the ancient practice 
of using pebbles as counters. In seashore places little shells 
were used in the same way, and allover the world man 
has used those natural counters, his fingers, as an aid to 
calculation. It is odd that the hands that made man a 
maker and set him higher in the scale of evolution than 

the highest apes served also as an invaluable tool for the 
early development of computation. Perhaps it is in the 
use of fingers for making and for counting that we have 
our first link in the chain of development uniting the crafts 
with mathematics. 

Notches and scratches, pebbles and shells, lines drawn 
in the sand, and fingers held together are admittedly sim
ple ways of recording numbers. More complicated tech
niques soon developed, and several of these depended on 
that other aspect of man, his skill as an artificer. Jewelry 
making, that ancient art of adornment, was pressed into 
use in some communities. In Africa among the Masai 
tribe the use of decorative necklets and armlets to record 
each passing year in the life of a woman was found but 
recently. Another complex art found in parts of the world 
as diverse as China and Peru was the use of knots in 
strings as a means of recording numbers. The Peruvian 
quipu is perhaps the most fascinating of all primitive 
means of handling numbers. It consists of a row of strings 
gathered at one end along a retaining strand. Each string 
bears knots of various degrees of complexity; a single or
dinary knot stands for a unit, a knot of double convolu
tion for ten, and so on. Colors may signify units of dif
ferent kinds, and the entire quipu is a shorthand aid to 
memorizing a verbal message. So far as the quipu is now 
understood, it is believed that the numbers represent cen
sus figures, either of sheep and cattle for agricultural and 
tax purposes, or of people for military or social duties. 

Thus, at the very onset of recorded history man was 
in the habit of using objects, natural and artificial, as aids 
to his already developed ability to count and use the 
results of such counting for various purposes. With the 
coming of the great high civilizations of Babylonia, Egypt, 
China, and India, but above all, of Greece, the functions 
of counting were to be vastly extended-on one hand, 
to all the commercial arithmetic and bookkeeping 
necessary to the new social order; on the other hand, to 
the needs of the pure mathematics and mathematical 
astronomy which flourished as the first immortal fruits 
of intellectual literate civilization. And as these needs 
grew, so did the technical means of satisfying them, giv
ing a whole new series of artifacts specially designed for 
dealing with number and mathematics. 

But despite this unfolding of sophisticated mathe
matical hardware, the older and more simple methods 
lived on and man continued for millenia to count on his 
fingers or with the aid of pebbles and shells until these 
became traditional techniques of some depth and scope. 
In the early nineteenth century Lieutenant Colonel John 
Warren, an officer in the Indian administration, 
discovered in the region of Pondicherry, south India, a 
native calendar maker who recited mnemonic rhymes and 
laid out black and white shells, by which means he formed 
a set of tables from which he could accurately compute 
the occurrence of eclipses. It was later discovered that 
these tables must have come from the corpus of Seleucid 
Babylonian astronomy which we know from ancient clay 
tablets dug out of the sands of Mesopotamia. Thus, hav
ing traveled halfway round the world and having been 
transmitted from one ancient culture to another, ancient 
mathematical learning had been preserved for two thou
sand years, without benefit of the written word, by the 
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THE PERUVIAN QUIPU, as it is now understood, was used 
to record numbers either of animals for agricultural and tax pur· 
poses or of people for military or social duties. It consists of strings 
gathered along a retaining strand. Each string bears knots of 

primitive technique of laying out seashells. Thus it was 
that even the most ancient of man's devices to assist him 
in counting proved vital in transmitting and keeping alive 
a piece of scientific knowledge. 

The first great civilizations 

By about 1500 BC, when the art of writing was already 
firmly\ established in the civilizations of Egypt and 
Mesopotamia and was beginning to extend into the early 
Mediterranean cultures of Crete, new elements had ap
peared in man's use of numbers. Everywhere the tech
niques of commercial accounting seem to have been im
proved to the point that there emerged a new class of 
scribal craftsmen who appear to have taken special delight 
in the process of training. School exercises preserved from 
this period include prototypes of the tedious problems 
that have plagued elementary arithmetic books ever 
since-all the familiar baths being filled by several taps 
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various degrees of complexity; a single knot stands for a unit, a 
knot of double convolution for ten, and so on. (Photo courtesy Field 
Museum of Natural History, Chicago.) 

and emptied by various-sized drains, all the usual men 
digging ditches of given dimensions in so many days, all 
the working out of brackets within brackets within still 
more brackets. In short, arithmetic had begun to be ad
mired as an exercise in mental gymnastics, and there came 
into being the first feelings for the pursuit of mathematics 
for its own sake. 

Such intoxication with the style and intrinsic beauty 
of mathematics was to become an important force in the 
development of our civilization, one underlying the en
tire intellectual content of science and philosophy. But 
at this early stage it was just one more thread in the strand 
that also contained the purely utilitarian functions of com
mercial arithmetic and everyday measurement. 

Having been liberated by the happy accident of its 
superior techniques in the writing of numbers, the Old 
Babylonian civilization of Mesopotamia soon began to 
reach far beyond the confines of practical application, 
far beyond mere baths and ditches, until at last its strength 
in pure mathematics waxed so great that with new 
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soph~stication it could tackle the immensely more com
plicated (although still practical) problems of technical 
astronomy and refinement of the calendar. 

The Egyptians, on the other hand, were less technical
ly able in arithmetic and always retained a strong element 
of the practical. The Greeks remembered this utilitarian 
tradition and therefore attributed to the Egyptians the 
art of the Harpedonaptae, the land measurers who went 
out each year with measuring ropes and recorders to 
survey and delimit the lands and fields vacated by the 
receding flood waters of the Nile. 

Perhaps, then, the cumbersome Egyptian methods for 
dealing with fractions left them masters of the geometry 
that takes its name from land measurement. However, 
we must bear in mind that geometry in the modern sense 
did not begin before the Greeks and that the Egyptian 
practice included no trigonometrical surveying but only 
the simple calculation of areas from the dimensions of 
the figures of the fields. Hence, even the apparently 
utilitarian tradition of the Harpedonaptae employed series 
after series of "schoolboy problems" in training the 
scribal craftsmen. 

Not all of this most ancient class of mathematics was 
trivial like the school exercises. It is now impossible to 
date with any certainty the discovery of all the truly 
mathematical results that were later systematized and 
brought into logical order by the Greeks. Unfortunate
ly, the Greek success in producing perfect textbooks like 
that of Euclid was so complete that they obliterated all 
that went before. 

Undoubtedly the most spectacular of these early 
evidences of true mathematics is a famous clay tablet, 
catalogued as Plimpton 322, dating from ca. 1500 BC, 
the height of the Old Babylonian period, and now in the 
library of Columbia University. This tablet lists a series 
of numbers that are associated with the lengths of sides 
of graduated right-angled triangles which obey the so
called Pythagorean theorem about a thousand years 
before the birth of Pythagoras. The tablet attests to this 
theorem being known and used in a way that betokens 
complete familiarity with all its arithmetical consequences. 
Furthermore, the numbers in the tablet are expressed in 
the customary Babylonian fashion, that is, in sexagesimal 
notation (based on multiples of 60) rather than in our 
present decimal notation. This sexagesimal system is still 
preserved in our division of the hour and of the angular 
degree into minutes and seconds. It is the plainest indica
tion that much of our astronomical heritage, once thought 
to go no further back than the Greeks, comes instead 
from this earlier civilization. 

Today, thanks to half a century of work by distin
guished Assyriologists, we know that more than just the 
remnants of the sexagesimal system go back to the Bab
ylonians. With the Babylonians we fhid the beginnings 
of mathematical astronomy and indeed of the tradi
tion of mathematical interpretation of nature that lies at 
the heart of modern physics and all our basic sciences. 
Using purely numerical techniques, without any apparent 
theory of why things worked the way they did and without 
any pictorial model of the stars and planets wheeling 
around, they nevertheless obtained successful results. 
They could predict virtually all the special astronomical 

phenomena in which they were interested and they could 
carry their predictions through long periods of time with 
amazing accuracy. 

We know now that the results of the Babylonian 
analysis became known in some diluted and perhaps 
distorted form to the earliest astronomers of Greece, who, 
however, sought for understanding of the same sort we 
seek today. They wanted an inner understanding of why 
things happened the way they did. They wanted a model 
of the universe. Eventually they achieved exactly this, but 
a considerable part of their success was owing to the 
Babylonian numerical constants and analysis which they 
had taken over and used so effectively. 

It is almost as if astronomy got off to an unfair and 
extraordinarily early start among the sciences by virtue 
of this curious crossbreeding. The union of Babylonian 
numerical analysis with the Greek lust for a tangible and 
visible model of the universe gave man his first huge suc
cess in understanding the world in terms of inexorable 
mathematical reason and in using that understanding to 
predict and remove the capriciousness that more primitive 
men had attributed to the whims of the gods. It is the 
"Greek Miracle" that gave us all the basic philosophy 
and ways of thought that have pervaded the Western 
World ever since, but it is the special feature of this 
miracle having been superimposed upon Babylonian 
arithmetic and astronomy that has given us the 
mathematical science now dominating the world. 

Scholars of but a generation ago had to pre~ume that 
most of that which is valuable in our civilization had 
derived from the Greek Miracle alone. Historians today 
have revised that estimate, particularly for mathematics. 
Knowing the extent of the Babylonian development, one 
might hazard a guess that without it there could have been 
no Euclid, no Hipparchus, no Archimedes, and none of 
that special growth of science which has made our culture 
so different from any other. In this light, then, we might 
more appropriately speak of the "Babylonian Miracle" 
as the true formative stage in our mathematics. 

Not only in these two ancient cultures did mathematics 
and science begin to develop. On the contrary, in nearly 
all the great centers that have ever been, the ever-visible 
natural cycles of celestial events dominated and fascinated 
men so that some knowledge of astronomy was born. 
Perhaps nowhere else did it reach the heights of Babylonia 
and Greece, but among other peoples astronomy in its 
arithmetical or geometrical modes developed in propor
tion to their abilities to reckon with numbers and visualize 
the mechanism of the universe. In the ancient American 
lands of the Aztecs and Mayans, a great arithmetical 
scheme was built on the basis of the natural cycles and 
the cycles that encompassed and reencompassed them un
til it became natural to think in terms of a great univer
sal cycle, at the end of which everything in the world 
would be restored to its original state. This fascinating 
notion of a cyclical universe occurred also to the ancient 
Indian cultures, and again, for different reasons but with 
the same fascination, in recent times. Symbolizing these 
cycles to the Aztecs were their great mathematical arti
facts, huge stone discs carved elaborately with glyphs cor
responding to the succession of days and years. These 
monumental calendar stones were huge undertakings, 
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CIRCULAR FORM OF THE AZTEC CALENDAR STONE 
mirrors that civilization's belief in a great universal cycle. The stone 
is carved with glyphs corresponding to the succession of days and 

magnificent projects which seem to have been central to 

the ritual and organization of the nation. As primitive 
mathematical hardware they are impressive, but like stone 
lions or Easter Island heads they just stand there, finished 
and static. 

In ancient Egypt, contrary to all myths of a powerful 
secret science, astronomy was more backward than 
elsewhere . The Egyptians were hindered by a poor tech
nique for expressing numbers, particularly fractions. 
While the Babylonians could operate with sexagesimal 
fractions in much the same way as we deal with decimals , 
the Egyptians had only a notation for unit fractions. They 
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years. To explain the universe, the Aztecs and Mayans constructed 
an elaborate arithmetical scheme based on natural cycles. (Photo 
courtesy Field Museum of Natural History, Chicago.) 

could speak of one fourth-part, and of one fifth-part, 
but they were unable to reduce 2/ 5 beyond 1/ 5 and 1/5, 
and they could deal with the sum of 1/4 and 1/5 only 
by means of rote methods so complicated that they made 
fr equent errors . 

With this drawback it was natural that Egyptian 
astronomy never received the complex mathematical treat
ment that Babylonian and Greek astronomy did . In 
Egypt, the emphasis seemed more visual, more upon 
tangible models. Thus there are tombs decorated with star 
pictures, with zodiacal signs, and with the Sky Goddess 
supporting the vault of the heavens. There are mummy 
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EGYPTIAN SKY GODDESS supports the vault of the heavens. 
In Egypt, mathematical technique never developed to the level of 
that in Babylonia and Greece. Hence, Egyptian astronomy seemed 

cases decorated with schematic calendars that show the 
risings of the various constellations in graphic succession 
throughout the year. 

More important to the story of mathematical hardware, 
it was in Egypt during the second millenium before Christ 
that there developed the first astronomical instruments 
of any complexity, a series of sundials and water clocks. 
The changing direction and length of the shadow of a 
tree, a stick, or a building can be easily perceived and 
conveniently used as a measure of the passing of a day 
and of the change of the days from season to season 
throughout the year. In primitive tribes today the shadow 
of a vertical staff is used in this way. Early medieval texts 
preserve for us the primitive practice of measuring the 
time of day by noting the length of a man's shadow in 
terms of the number of times the length of his foot is con
tained in it. In a couple of obscure Babylonian tablets 
there are fragments of a scheme that lead us to believe 
a similar method, arithmetically refined, was also prac
ticed there. But in Egypt, for the first time, one finds more 
complex instruments to measure the passing shadow and 
record it. Similarly, the steady drip of water must have 
been observed as soon as an irate housewife suffered a 

to depend more on tangible, pictorial models of the universe than 
on mathematical ones. (Photo courtesy Adler Planetarium, Chicago, 
D. J. Price Photographic Archives.) 

leaky pot, and presumably the use of this steady flow to 
measure time came also at an early date. In primitive 
societies today a leaky bowl is used to control short 
periods of time-to allocate a sparse flow of precious 
water in an irrigation channel, for example. In Athenian 
law courts, each contestant was allowed to speak for a 
given time measured by a standard pot of water leaking 
from a little hole at its base. 

Her.e again, in Egypt, more sophisticated methods were 
developed early. A leaky pot will run quickly when it is 
full, more slowly as it empties. To counteract this varia
tion, the Egyptians devised a vessel shaped like a modern 
flowerpot, wide where the flow is more rapid and nar
row where it is weak, so that the water level dropped 
steadily, falling a uniform distance (almost) in uniform 
time. By marking the interior of the vessel with a uniform
ly graduated scale, man could now measure the hours of 
the day, and by having several such scales, one for each 
month of the year, he could allow for the natural varia
tion that gives long days in summer, short in winter. Not 
until the end of the Middle Ages was time ordinarily 
measured in the uniform, constant hours we use today. 
In all former times the length of daylight and the length 
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of darkness were each divided into twelve, so that when 
the hours of the day were long, those of the night were 
short, and vice versa. 

It may at first seem as if these devices, sundials, and 
water clocks correspond to our modern clocks and 
watches as practical instruments for telling the time. They 
were more nearly a sort of astronomical peep show, for 
edification rather than practical utility. It seems likely that 
in a society with so few such "public clocks" in the 
temples, telling the time had little practical significance. 
At any rate, many of the ancient specimens are covered 
with astronomical inscriptions, which leads one to believe 
that their role was more scientific than secular. 

This role is recurrent throughout the early history of 
astronomical clocks. The inexorable and immutable laws 
governing the daily rotation of the heavens and the 
movements of the planets seem to have inspired man to 
duplicate them, and these clocks attest not only his 
understanding but also his skill in making his own 
microcosm, in following the artifice of the Great Creator. 
He did not care that the clocks might run a little too fast 
or too slow; of overriding importance was the making 
of an artificial universe, or at least that part of it ex
hibiting the unfailing regularity that was so impressive. 

It is, then, in ancient Egypt with its superb technical 
skills in handicrafts and its apparent love of images and 
pictorial thinking that we first find such instruments. Yet 
in this civilization the science of astronomy was hardly 
begun. We must turn next to the cradle of our own 
culture, Greece and Rome, and follow the extensive evolu
tion of mathematical hardware there. 

Graeco·Roman civilization 

From the beginning of Greek history it is clear that 
Greek culture valued highly the power of the picture and 
the image. All the justly famous scientific thought and 
philosophy of the Greek Miracle seems dominated by this 
capacity to form a clear image and visual model of the 
world and the interactions within it. Similar in this respect 
to the more ancient Egyptian civilization, the Greeks 
possessed the added advantage of that lust for argument 
and discussion that led to the age of Plato and Socrates. 

In the special field of astronomy, later to blaze the trail 
for a mathematical interpretation of nature, they had one 
extra advantage, the strength of which has been justly 
recognized only within the last half century of scholar
ship. Round about 300 BC, perhaps a little before, they 
gained access to many of the results of the highly suc
cessful and complicated Babylonian astronomy and uti
lized ard intermingled them in their own scientific model 
of the universe. Thus, by virtue of Babylonian predeces
sors, the Greeks were able to mix the arithmetical com
putational approach with the visual image model, a 
historically unprecedented union of arithmetic and 
geometry. Out of this melting pot came a virile astronomy 
in which one could not only compute what was going to 
happen next, but could also visualize why things would 
happen in that fashion. This is a line of theory that begins 
perhaps in the time of Eudoxus (3rd century BC), leads 
through Hipparchus (2nd century BC), and sees its 
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ultimate development in the great Mathematical Synthesis 
of Ptolemy (2nd century AD), a book that is one of the 
finest scientific achievements in history. This book 
dominated scientific thought until the time of Kepler, an 
interval of about 1400 years. Except for Euclid's 
Elements, it may be said that the Almagest, as the Arabs 
and medieval scholars called Ptolemy's work, lived longer 
than any other scientific book ever has or probably ever 
will. 

With this exceptional development of the use of 
mathematics in science it is natural that the Greeks should 
have been stimulated to new and important advances in 
mathematical hardware. These took the form of models 
of this newly understood universe in all sizes and 
shapes-tangible manifestations that showed the heavens 
revolving and the natural cycles repeating themselves with 
appropriate rhythms. 

Thus began a new and important line in the growth 
that led to a proliferation of other mechanical devices such 
as clocks and, eventually, calculating machines. To trace 
this line we must follow the rise of Greek technology in
sofar as it concerns astronomical models and gear wheels, 
and also the steady improvement and use of the older line 
of mathematical hardware, the aids to accounting that 
were used in commerce and government. These two lines, 
the scientific and the commercial, interweave to produce 
the history of calculating machines. 

Scientific calculators and astronomical models. Accord
ing to classical tradition, the earliest celestial globes were 
made by Thales (ca. 600 BC), but virtually nothing is 
known of this almost mythical beginning. The only sur
viving example of an ancient globe is the magnificent 
Farnese Atlas, a work expressing all the artistic imagery 
attendant upon the earliest astronomical "models." The 
first concrete evidence of scientific models is attested in 
the fourth century BC, the golden age of Greek thought, 
the time of Plato and Aristotle. It is affirmed in the im
agery used by Plato in describing the form and structure 
of the cosmos, and again in mathematical form by his 
contemporary, Eudoxus, the first Greek astronomer 
known to have made a geometrical model of the universe. 
It is not known whether the models of Plato and Eudoxus 
existed only in their imaginations, but their descriptions 
are so vivid that one has a strong feeling that material 
models, of wire and brass and wood, were at hand. 

It is abundantly clear that actual models were in use 
from the third century BC onwards, geometrically con
structed sundials from this period have survived, a few 
hundred of them from the whole classical period. Just 
as with the Egyptian waterclocks, it seems likely that these 
sundials were not merely devices for telling the time. 
Though most of the surviving examples have hour lines 
marked on their surfaces, these lines are seldom 
numbered, so one cannot readily tell which hour is in
dicated. On the other hand, they are often elaborately 
inscribed with lines representing the equator and the 
tropics, the solstices and the equinoxes. These sundials 
must therefore be regarded as beautiful exercises in 
the cunning use of geometry to model the basic facts 
of astronomy. They are full of the exuberant use of 
mathematical tricks and neat devices for their own 
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sake rather than for their utility. In the Greek sun
dials man achieved a mathematical model that caused the 
sun to draw its own path in an artificial microcosm of 
the heavens. 

Such sundials were probably the earliest and most 
primitive models developed by Greek science. Soon they 
developed into sublimely complicated forms in which a 
single block of stone could be carved with many different 
dials, all indicating the same progress of the sun by diverse 
ingenious arts. These sundials fascinated the Greeks as 
crossword puzzles and chess problems fascinate us. Again 
and again in history, in ninth-century Islam, in 
fourteenth-century Europe, and in the heyday of the 
seventeenth-century flowering of modern science, this 
fascination with ingenious dials crops up. 

THE FARNESE ATLAS, in the National Museum, Naples, Italy, includes the 
only surviving example of an ancient globe. According to classical tradition, the 
earliest celestial globes were made by Thales in about 600 Be. (Photo courtesy 
Adler Planetarium, Chicago, D. J. Price Photographic Archives.) 
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Sundials were not the only instruments or models 
known to the Greeks. Starting slowly in the third cen
tury BC, but helped along by the mechanical genius of 
Archimedes (287 to 212 BC) and by an increasing pace 
of development in the second century BC, other devices 
began to appear. Globes and spheres of all sorts were 
used, and water clocks were developed far beyond the 
complexity of those of Egypt. Gear wheels, and simple 
devices employing them, seem to have been used by Ar
chimedes. His writings on the screw are well known, but 
gears in comparatively well developed form are known 
only from his later writings. 

From Archimedes, too, though again only in later men
tions by Cicero and other authors, we know of the mak
ing of a wonderful model that not only depicted the ar
rangements of the stars, the sun, the moon, and all the 
planets, but showed them in motion, keeping time with 
their real progress in the heavens. Unfortunately, the 
awestruck accounts give too little information for us to 
understand the exact nature of this model. It has often 
been suggested that it was a complicated geared 
planetarium, but probably it was merely a water clock 
in which a string attached to a float and tied round a 
sphere caused the sphere to rotate and carry round model 
planets that were stuck to its surface and that were 
changed by hand from day to day. 

Whatever it was, this animated model of Archimedes's 
clearly stands at the beginning of a long and important 
tradition. Such astronomical showpieces were more and 
more elaborate as time passed, from classical times to the 
Islamic and European middle ages, to the Renaissance, 
and up to the popular planetariums of our time. From 
this piece of exhibition artwork there eventually developed 
the mechanical clock, but it was not until late in the Mid
dle Ages that the little dial on the exhibition that told the 
time became the main feature and main purpose of the 
instrument. 

Two things must be said about these early astronomical 
devices and their relation to computing machines. In the 
first place, they were the first sophisticated scientific in
struments, the first of any complexity of construction. 
Because they stand at the very beginning of all scientific 
instrumentaticn, it is important to realize that although 
one may regard them as little more than scientific toys 
or sideshows, or at best as mere timekeepers, it is more 
accurate to think of them as the first true computing 
machines, the first devices that calculated by making a 
model of the thing that was to be measured . Today we 
would call them analog computers. 

The second notable thing about these protoclocks, as 
we shall call them, was their powerful historical effect 
on the evolution of the particular craft and philosophy 
that accompanies such special mathematical hardware. 
The craft of fine mechanics had its beginnings here and 
later became the whole complex of clock making and 
scientific instrument making on which depended the rise 
of experimental science and the mechanics of the in
dustrial revolution . The philosophy was that of the creator 
as geometer, of the universe as an incredibly complicated 
machine , and of man as an ingenious mechanism with , 
possibly, a divine soul that gave him a free will not shared 
by grosser pieces of clockwork. 
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Unfortunately it is almost impossible to follow the 
growth of Greek technology in the making of these proto
clocks. Very few fragments of such devices have come 
down to us, and it seems clear that this sort of knowledge 
was not preserved in Greek manuscripts . The only books 
we have are those that treat mechanics only for the sake 
of the associated mathematics, and a few precious 
technical handbooks like those of Hero of Alexandria and 
Vitruvius. But from such authors we know that there ex
isted an endless variety of semiscientific mechanisms of 
considerable ingenuity. The texts describe the use of gears 
in simple reduction trains-the most effective use seems 
to have been in hodometers, which count the revolutions 
made by a wheel that is rolled along the ground, and in 
taximeters, which count the revolutions made by a wagon 
wheel. From these devices one could measure the distance 
traveled by means of dials orof little balls made to drop 
into a gong at each mile or other appropriate interval. 

The texts also describe automata worked by strings and 
levers, and complicated dramatic effects produced by 
water and air pressure. Hero describes an automatic 
theater that has dancing figures, mechanical birds that 
sing and flap their wings, temple doors that open by the 
lighting of a ceremonial fire, slot machines that dispense 
water or wine on payment of a coin , and trick jugs that 

. pour water or wine at the will of the conjurer. All the 
basic elements of mechanism were known, but with the 
sole exception of the protoclocks they seem to have been 
used for the trivial purpose of an entertaining mechanical 
magic . 

The interest in protoclocks appears to be directly related 
to the progress of astronomical understanding. The 
geometrical model of Eudoxus, trailblazing though it was, 
could not have been of much use in exact calculation and 
prediction of celestial phenomena. Qualitatively it gave 
a good picture, but quantitatively it was full of shortcom
ings. By the time of Hipparchus, thanks to the progress 
of geometrical techniques and the influx of Babylonian 
arithmetical methods, astronomy had progressed to the 
point where it could account accurately, in simple cases, 
for the motions of the sun, moon, and planets. Eventual
ly, in the elegant and comprehensive scheme of Ptolemy, 
all the more complicated cases were brought to the 
mathematical perfection that was to last another 1400 
years . 

Now, one of the basic problems of mathematical 
astronomy is that one has to master the techniques of 
what we now call spherical trigonometry, the calculation 
of angles and triangles drawn on the surface of a celestial 
sphere. Then, as now, it was difficult for most people 
to see three-dimensional problems, and ways were found 
to reduce the problems to two dimensions. Then, as now, 
complic'ated computations involving trigonometric tables, 
though not difficult in principle, were tedious in prac
tice. Because of these factors it happens that from about 
the time of Hipparchus onwards, we find considerable 
use of special methods for drawing astronomical diagrams 
on a plane instead of a sphere, and for obtaining the result 
of calculations by measurement of a carefully constructed 
figure rather than by numerical calculation using tables. 

Thus began the series of techniques now known as 
graphical computation, and no sooner had such methOds 
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A 1I0DOMETER counts the revolutions made by a wheel as it is rolled along 
the ground; hence, it can be used for land and distance measurement. This 
nim'lrenth.century model illustrates the general plan of the device-similar 
mr~ha",sms were constructed by the Greeks. (Photo courtesy Adler Planetarium, 
ChlcJl!o.) 

31 



32 

been introduced than they began to be mechanized. 
Probably the most important graphical technique, leading 
to the "most sophisticated mechanization, was 
stereographic projection. This technique was almost cer
tainly known to Hipparchus, though we do not have 
direct evidence of texts or instruments until rather later. 
Stereographic projection is used for mapping lines on a 
sphere onto a plane. To construct a stereographic pro
jection, one places the sphere above the plane so that its 
south pole is nearest to the plane and its north pole is 
furthest away, and then views the plane and sphere 
together from the north pole, the point of projection. All 
circles on the sphere become circles or straight lines on 
the plane, and no ovals, ellipses, or other special curves 
are needed. 

For the special purposes of astronomy, the 
stereographic projection is especially useful, since rota
tion of the sphere about its poles simply turns the image 
projected onto the plane by the same amount. Using this 
method one can have a two-dimensional map of the stars 
in stereographic projection, and by turning this map one 
can simulate the rotation of the celestial sphere as the stars 
rise and set through the night and through the year. All 
the motions of stars and planets can be shown on a plane 
and measured by means of appropriate scales. 

The Antikythera mechanism is tantalizing 
evidence that the ancients may have 

been much further advanced in machine 
building, and particularly in computer 

technology, than we think. 

Two important ancient instruments were constructed 
to facilitate and exhibit this elegant means of mapping 
the universe. In one', the astrolabe, a series of flat discs 
engraved with stereographic projections and their scales 
enabled the astronomer to make his calculations 
graphically; in the other, the anaphoric clock, the main 
disc of the star map was made to tum automatically by 
means of a water clock, and the map, seen through a win
dow whose shape corresponded to that of the horizon, 
gave an impressive public display of the theory of 
astronomy and the skill of the artificer. By the astrolabe 
or the anaphoric clock one could know the positions of 
the stars and their risings and settings even though the 
night was cloudy; one could tell the positions of the sun 
at night and of the stars and moon by day. With the 
astrolabe one could tell the time of day or night from any 
observed position of sun or stars; from the anaphoric 
clock one could tell the time without observation at all. 

Out of the principle of stereographic projection came 
these two instruments, the astrolabe, which was to the 
ancient astronomer what an electronic calculator is to a 

modern engineer, and the anaphoric clock, which was to 
the ancients the mightiest and most impressive public 
demonstration of the most highly developed and most 
perfect science of the time. Although more than a thou
sand astrolabes survive, not one dates back to classical 
antiquity. The fates have dealt less unkindly with the 
anaphoric clock. In the ancient agora, or marketplace, 
of Athens, and in the fashionable coastal resort of anti
quity at Oropos just south of the capital, there survive 
foundations and water tanks for buildings that must have 
housed such monumental clocks. In the Roman Agora 
at Athens there is also the almost intact Tower of the 
Winds built by Andronicus Cyrrhestes in the first cen
tury BC to house a great water clock. We are sure that 
the building had other scientific devices, for Varro and 
Vitruvius describe it as showing astronomical events by 
means of the clock, by the sundials that were engraved 
on each of the eight faces of the octagonal tower, and 
by a large brass weathervane in the shape of a Triton (now 
lost) that pointed to sculptures personifying the eight 
winds. 

In addition to these remains of the buildings, there sur
vive two fragments of dials from such clocks, both dating 
from Roman times, perhaps the second century AD. One, 
from Grand in the Vosges, is only a calendar plate con
taining a circular series of holes marked with the days 
and months of the year and intended for the plugging-in 
of a model sun which was carried round by the clock to 
show the hours of the day and night. The second piece, 
found at Salzburg, Austria, has a similar set of holes at 
its edge but is more elaborately engraved with figures of 
all the constellations and the ecliptic. The original disc 
must have been more than five feet in diameter and would 
have needed a powerful water clock to tum it. (It was 
from this fragment that an anaphoric clock was 
reconstructed by IBM to show the function of this most 
ancient scientific computing' device.) 

Also preserved from antiquity are the remains of 
another computing device of quite different character. 
It comes from the first piece of underwater archaeology, 
the accidental discovery by Greek sponge fishers in the 
year 1900 of a wrecked treasure ship from the first cen
tury BC. Among the cargo of fine bronze and marble 
statues was a heavily corroded mass of brass plates and 
wheels which has been identified as a complex system of 
gear wheels designed to move pointers over scales en
graved with sequences of planetary phenomena. When 
a main shaft was turned, perhaps by hand, perhaps 
automatically, the dials indicated the risings and settings 
of the planets, their stations and retrogradations, and 
perhaps also the eclipses. Two thousand years under the 
sea have done so much damage that the machine-now 
called the Antikythera device, after the name of the island 
near which it was found-cannot be completely 
reconstructed. Enough of the inscription survives, 
however, to make it certain that the device dates from 
the time of the shipwreck, and that it may well have been 
the sort of demonstration device housed in the Tower of 
the Winds or some other monumental water clock. It is 
enigmatic that this machine is much more intricate in 
design and exhibits much more skill in workmanship than 
any other scientific device from antiquity known to us. 
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Such a device is not mentioned in any known text-it re
mains tantalizing evidence that tells us the ancients may 
have been much further advanced in machine building, 
and particularly in computer technology, than we think. * 

Commercial arithmetic and the abacus in classical anti
quity. The development of aids to commercial arithmetic 
took a different line in antiquity from that associated with 
scientific calculation. Astronomy needed ingenious 
mathematical constructions and mechanical devices, but 
the keeping of accounts demanded but little elaboration 
of the primitive method of laying out pebbles and shells. 
The chief improvements, indeed almost the only im
provements, were in the provision of a specially marked 
table to keep the piles of pebbles in order, and in the mak
ing of a portable miniature table that could be held in 
the hand and that kept the pebbles handily fitted into 
grooves so they could not get lost. 

Pictorial representations of treasures and accountants 
sitting at special counting tables are known from a painted 
vase (the Darius vase, in the Naples National Museum) 
dating from the fourth century BC, from an Etruscan 
engraved gem (in the Cabinet des Medailles, Paris), and 
from a famous Roman mosaic of the Seven Sages which 
shows not only the counting board but also a globe and 
sundial. In none of these representations is it clear how 
the table is designed, but fortunately two excellent and 
complete specimens have been preserved, one from 
Salamis and the other from Oropos. In principle they 
resemble gaming boards (like those used for chess and 
checkers) which seem to have been known since farthest 
antiquity. 

The Greek counting board comprised essentially a set 
of symbols for units, tens, hundreds, thousands, etc., and 
below them a series of parallel lines on which to set out 
rows of counters corresponding to various amounts of 
money that were to be added. The exainples we have are 
more complex. Between the symbols for the powers of. 
ten there are others for multiples of five so that the set 
runs: 

five-hundreds 
hundreds 
fifties 
tens 
fives 
units of drachma 

To the right of the unit symbol there are others for obols 
(sixths of a drachma) and half-, quarter-, and eighth
obols. There are also two other similar sets of symbols 
so that one can set up two numbers at the same time and 

* A detailed discussion of both the Tower of the Winds and the 
ADtikythera mechanism appears in "Derek de Sol1a Pr!c~ and 
the Antikythera Mechanism: An Appreciation," also in thiS Issue. 
See pages 15-21. 

-Ed. 
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work out their product by transferring counting pebbles 
to the third row of symbols. 

The great slabs of marble on which these counting 
boards have been chiseled must have been set up per
manently at some royal treasury or special booth near 
the marketplace; they could hardly have been carried 
about. The portable form, now knqwn as the abacus, is 
represented by three surviving examples, all of the same 
type. Each consists of a small sheet of iron into which 
have been cut a number of pairs of slots; each pair con
sists of a small slot above with a single bead sliding in 
it and a longer slot below with four beads. The four beads 
each represent a unit and the single bead represents five, 
so that, for example, when the single bead is raised and 
two of the four are also raised, that column represents 
seven. Such columns are provided for units, tens, hun
dreds, and so on up to millions, and the appropriatesym
bol is engraved in the strip between the upper and lower 
slots. To the right of the units, as in the big marble count
ing boards, there is a column for obols (with five beads, 
since six obols make a drachma), and to the right of that 
again there is a special short slot for fractional parts of 
an obol. 

It might be remarked that the ancient use of fives as 
extra columns in the marble abacus, and the method of 
using four beads and one bead in the hand abacus, have 
been carried through the entire development of the device. 
The advantage over a row of nine beads or pebbles is ob
viously that of quicker recognition and manipulation of 
the numbers. For this reason the Roman system ot 
numerals retained the practice that looks clumsy to our 
eyes bur was very convenient for commercial use on an 
abacus. I.t is only when one wishes to multiply and divide 
(as one rarely did in abacus work) that the Roman system 
shows its faults. For scientific calculation, the Greeks and 
Romans continued to use the sexagesimal system of the 
Babylonians with its adequate mUltiplication tables, its 
use of an effective zero, and its place value notation that 
is so similar to decimals. 

The Middle Ages in the Orient, in the 
Islamic world, and in Europe 

To the history of science and technology, the decline 
of late Roman civilization presents an instructive exam
ple. Shunning the effete intellectualism of scientific en
quiry for its own sake, the Romans bent their attentions 
only to those parts of skill and learning that offered a 
profitable technological application in the cause of state 
and empire. For some time their achievements in the 
building of bridges and aqueducts, roads, and plumbing 
systems were the wonder of the world. But gradually it 
became clear that there were no fertile new ideas to back 
the technological applications and Produce new 
technologies. It is an exaggeration to see the decline of 
Rome in this light alone, for political and economic 
bankruptcy had many other roots. However, one must 
allow that a basic scientific effort reaching not much fur
ther than dilute encyclopedic gatherings of all that could 
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still be understood and popularized from the grand tradi
tion of Greek science was totally insufficient. The 
Romans, concentrating on applied technology alone, were 
unaware that the applied and the theoretical exist in a 
state of symbiosis, gaining from each other and growing 
together. 

Thus it was that after the decline of Rome, not Roman 
but Greek science passed to the inheritors of classical 
culture. For a few centuries the precious remaining 
fragments of Greek learning were whirled through a 
tumultuous cycle in that melting pot of people and 
languages that constituted the civilized world. In the 
upheaval, Greek science spread to such far-flung parts 
of the world as India and China and the Sassanian and 
Byzantine Empires, and eventually to the most receptive 
culture of Islam, where it took root, grew again, and was 
eventually handed on to medieval Europe. 

Unfortunately, it is in just this exciting period that the 
historical records are most incomplete, and it is virtually 
impossible to tell how many of the Oriental contributions 
were independent and how many were transmissions from 
West to East or vice versa. For instance, in China in the 
second century AD, almost the time of Hero of Alexan
dria, the Buddhist mechanician Chang Heng described 
a geared taximeter, very like that of Hero, and also a 
celestial globe that was somehow turned by dripping water 
so that it would agree with the heavens "like the two 
halves of.a tally." 

In India, the earliest astronomical texts contain 
references to animated astronomical models that turned 
by themselves in such a manner as to duplicate the eter
nal and perpetual motion of the heavens. Similar cases 
of direct transmission, parallel development, and what 
is sometimes called "stimulus diffusion" occur in trac
ing the complicated historical development of the 
numerical systems of the world and of the abacus and 
other devices of commercial arithmetic. Greek and Arabic 
alphabetic numerals, Roman numerals, and lastly Hin
du numeral forms spread around the world, changing 
their shapes and styles as they went. A particularly good 
example of the way such things were transmitted is pro
vided by a brass magic amulet dating from about the 
eleventh century, recently excavated in Sian, China. The 
amulet is actually a magic square written in Arabic 
numerals and is one of the earliest extant examples of 
this rather curious class of mathematical hardware. 

Of more direct interest, perhaps, is the Oriental 
development of the abacus. The Chinese suan-pan (swan
pan) may well be as ancient as the Roman abacus, but 
again one cannot tell whether there waS direct transmis
sion (in either direction) or parallel development for 
similar purposes. The Japanese soroban obviously derives 
from the Chinese instrument it resembles, differing only 
in the use of a single bead (instead of the suan-pan' s two 
beads) to represent the gatherings of five units in each 
column. The Western abacus of our own later Middle 
Ages and the Russian stchoty, which was used in outly
ing parts until quite recently, probably came from a later 
transmission from East to West. 

In Western Europe, tradition seems to have returned 
to the original form of the Greek abacus rather than to 
the portable Roman instruments or their Oriental 

equivalents. From the rise of mercantilism in the late Mid
dle Ages and early Renaissance we have many pictures 
of the special counting tables-shop counters-of mer
chants and moneylenders. The tabletop is divided, 
perhaps in several places, by inscribed lines headed with 
symbols for units, tens, hundreds, thousands, etc., and 
often with additional symbols for subunits of the currency 
such as shillings and pence for pounds. Special 
"counters" (rechenpfennige = counting pennies) were 
minted for use with these tables, and the art of casting 
accounts became the subject of many treatises in 
manuscript and later in print. From the evidence provid
ed by such tables that have been preserved, and by pic
tures and texts, it is clear that they remained in use until 
the early years of the sixteenth century, when they began 
to be displaced by the comparatively new art of keeping 
accounts by means of numerals written on paper and sums 
worked in the arithmetical techniques that came with the 
consistent use of modern Hindu-Arabic numerals. The 
spread of these numerals was surprisingly rapid, especially 
in scientific circles. When the first great tabular compila
tion of astronomical information, the Toledo Tables, was 
transmitted from Moorish Spain to England and France 
in the twelfth century, all the numbers, though expressed 
in the usual sexagesimal form, were written in Roman 
numerals. When the next collection, the Alfonsine Tables, 
was transmitted from Spain at the end of the thirteenth 
century, the numerals were all Hindu-Arabic. In the four
teenth and fifteenth centuries these numerals gradually 
became regularized in use and were transformed into their 
present forms; the last changes, the turning of the figures 
4 and 5 into their present positions, did not happen until 
the coming of the printed book at the end of the fifteenth 
century. The change can be followed even in the lifetime 
of one man, for the dates on the drawings of Albrecht 
Durer show the entire transformation. 

It was, however, in the area of astronomy and its in
struments and protoclocks that calculating devices pro
gressed most during the middle ages of Islam and the 
West. Just before the rise of intellectual Islam in the 
seventh and eighth centuries, there had been a stirring 
of interest in astronomical theory and instruments in the 
Byzantine Empire. The evidences of scientific work 
among the Byzantines comprise only a few texts describ
ing the construction and use of the astrolabe, and one 
splendid surviving example (although this dates from very 
late in the period). 

From the beginning of their interest, Moslem scientists 
evidently took a special pride in treating astronomy not 
as an abstract mathematical theory so much as a physical 
description of the cosmos, to be visualized as a model 
and measured with instruments. The astrolabe became 
especially popular. Texts describing how to make and use 
it were among the earliest scientific writings in Arabic. 
By the eighth century there existed whole dynasties of 
special craftsmen who made this and similar instruments, 
improving them with mathematical and artistic 
embellishments until they became scientific jewels highly 
prized by scholars and their princely patrons. From 
signatures and dedications on instruments and from con
temporary references we know that astrolabes and other 
astronomical instruments were often made by a whole 
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team of craftsmen rather than by a single individual; a 
metalworker, a mathematician, an engraver, and a 
decorator would work on the same instrument, and all 
of these men might have sons and apprentices who would 
grow up in the tradition of the craft. This pattern of col
laborative work extended in Islam to the operation of in
struments, so that here one finds the first observatories 
fitted with a great range of instruments and calculating 
devices and staffed by astronomers, mathematicians , in
strument makers, clerks, and students. 

Although the astrolabe seems to have been the most 
ingenious instrument in general use, there was also a large 
range of sundials, quadrants, globes, and angle-measuring 
instruments for making observations. Many of them must 
have been derived from the earlier Greek devices , but in 
all of them the Moslems made general improvements and 
adaptations. And new instruments were devised; some, 
like the Zone Plates made by al-Kashi and others, were 
designed for graphical computations of trigonometric 
equations. 

The most important development for our purpose was 
a series of special analog computing devices for 
calculating the motions of the planets . The first of these 
appeared early in the eleventh century when the famous 
astronomer al-Biruni designed a geared machine that 
showed the places of the sun and moon in the zodiac and 
indicated the phases of the moon and the age of the 
(lunar) month. An example of this instrument dating from 
1221 AD is preserved on the reverse of an astrolabe made 
by Muhammad ibn Abi Bakr of Isfahan. It is worth 
noting that the design of the moon-phase dial is exactly 
the same as those still found on many grandfather clocks, 
and that in many detailed points of design this geared 
astrolabe is in the same tradition as the Antikythera 
mechanism from first-century Be Greece. Indeed, there 
is some evidence that the craft was transmitted from 
Greece to the Islamic world, and from the Islamic world 
to medieval Europe. 

At about the same time, early in the eleventh century, 
there began to appear a number of designs for other 
planetary computers, more mathematically intricate so 
as to follow the motions of planets other than the sun 
and moon , but without the mechanical sophistication of 
gearing. The calculations involved in finding the positions 
of Mercury, Venus, Mars, Jupiter, and Saturn were 
tedious, and clearly there was much advantage to be 
gained from the use of these equatorium devices (from 
equate , to calculate, to make an equation). In principle 
the equatorium consisted of a brass plate or plates on 
which geometrical constructions were equipped with 
movable threads and engraved scales for drawing out each 
special line position as needed . 

Protoclocks were also developed by the Moslems and 
elaborated into quite gaudy mechanical peep shows . 
Several detailed and precise manuscript descriptions and 
two surviving examples, all from the thirteenth and four
teenth centuries, show that Moslems had taken over all 
the devices described by Hero and added many im
provements. There were water clocks with moving 
peacocks, monkeys, and elephants; systems for ringing 
the hours on gongs and bells and indicating them by 
pointers or by doors that opened to reveal a manikin or 
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AL-B lR UN I'S GEARED CALENDAR COMPUTER of ca. 1000 AD showed 
the places of the sun and moon in the zodiac and indicated the phases of the 
moon and the age of the lunar month. (Drawing courtesy estate of Derek de Solla 
Price.! 

an inscribed tablet; and anaphoric clocks that had turn
ing astrolabic dials to show the places of the stars and 
planets by night and by day . In the Islamic world, these 
astronomical devices began to take on something like their 
modern role as time-telling instruments rather than 
wonderful models af!d ingenious embodiments of the 
cosmos . In the religious practice of Islam it is of cardinal 
importance to observe the ritual prayers at the exact 
moments designated throughout the day. Indeed, the chief 
oJtward manifestation of the Islamic faith is the color
ful call to prayer of the muezzin from his minaret on the 
mosque; this makes a reliable and accurate timekeeper 
an essential part of the equipment of each mosque. In 
a city of many mosques, the guardians of the timekeepers 
will vie one with another for a record of neither calling 
before the hour is due nor falling behind the consensus 
and calling too late . It is for this reason that mosques 
are rich ly furnished with clocks and sundials_ For a 
parallel reason cathedral clocks became popular in 
medieval Europe_ During the fourteenth and fifteenth 
centuries great astronomical clocks were built all over 
Europe, serving both as astronomical exhibitions and also 
as timekeepers for the proper execution of the daily round 
of prayer. 

Even before this, the whole art and craft of instrument 
making had spilled over from the Moslem lands into 
Europe during the great transmissions of learning in the 
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AB! BAKR'S ASTROLABE of 1221 /2 AD includes a geared 
calendar mechanism. The gearing follows the al·Biruni design and 
contains many features similar to those of the Antikythera 

late Middle Ages . From the thirteenth century on, 
astrolabes had been known and manufactured together 
with sundials, quadrants, waterclocks, and all the other 
devices. By the second half of the fourteenth century there 
was a highly developed craft with its own practitioners, 
continuous improvement and innovation, and a steadily 
growing literature. In the 1390's the great English poet 
Geoffrey Chaucer adapted into English one of the best 
Arabic texts on the astrolabe and wrote also on the design 
and construction of a planetary equatorium. 

The great astronomical clocks of the cathedrals were 
undoubtedly the high point in the development of scien
tific machinery in the Middle Ages . Nobody knows how 
and when the more precise and reliable weight-driven 
mechanical escapement replaced the water clock. Some 
think it might have come from China, where the tradi
tion of globes animated by water power had evolved 
steadily. By the year 1080 the Chinese had built enormous 
clock towers in which the automatically moving globes 

mechanism. The instrument is now in the Museum for the History 
of Science at Oxford University. (Photo courtesy estate of Derek 
de Solla Price.) 

and the manikins that rang gongs and cymbals to an
nounce the hours of the day and the watches of the night 
were powered by a giant water wheel. This wheel was held 
in check by a system of rocking levers that bore some 
resemblance to the verge and foliot escapement of the first 
European clocks, and the notion could have been 
transmitted by travelers, perhaps in the late crusades. 

Although we do not know just how it evolved, the 
mechanical clock seems to have reached an impressive 
maturity with extraordinary rapidity . The earliest clock 
we know about in any detail also happened to be more 
complex than any built for centuries after; its array of 
planetary dials, its complicated assemblies of circular and 
elliptical gears, its link mechanisms, and its ability to per
form careful computation made it one of the most hand
some pieces ever constructed. This direct descendent of 
the Greek anaphoric clock was made by Giovanni de Don
di in Padua in 1364, and although it has since been lost, 
de Dondi's working drawings have come down to us and 
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THE DE DONDI CLOCK of 1364 was more complex than an~' 
built for centuries after. Its seven main dials showed the motions 
of the planets and gave results accurate to within a degree or so. 
Gear teeth in the form of equilateral triangles were emplo)'ed
such teeth were inefficient, but the form survived in later clockwork. 
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Although the original de Dondi clock has been lost, manuscript 
dtscriptions and drawings have permitted reconstructions such as 
(his one in the Smithsonian Institution. <Photo courtesy Smith. 
>!lnian Institution.) 
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have permitted the construction of a duplicate. Its seven 
main dials showing the motions of the planets (the time
telling dial is hardly discernible in the general complica
tion of machinery) accurately portrayed the Ptolemaic 
theory and gave results generally accurate to within a 
degree or so. 

The de Dondi clock undoubtedly was not the first of 
its kind but is the earliest we know of in sufficient detail 
from manuscript evidence. Richard of Wallingford, born 
the son of a blacksmith and risen to the high post of 
bishop at the rich Abbey of St. Albans, is reported to 
have made a wonderful astronomical clock soon after the 
beginning of the thirteenth century. It is said to have been 
so full of gearing and so costly and elaborate that only 
he could keep it running, and only then at an almost pro-

Leonardo de Vinci's mechanical ,drawings 
appear to us as original works of 

genius-we should remember, however, 
that Leonardo was also the inheritor 

of a long-established tradition 
of instrument making. 

hibitive expense that drew criticism from his superiors and 
from the king. Richard's clock may have been powered 
by water; we do not know, for the careful description 
he left has been lost, and only his lesser works on 
planetary computers and other astronomical instruments 
survive. 

De Dondi's clock was followed by many others in the 
same genre, though none was of such complication' until 
the third in the series of great clocks in Strasbourg 
Cathedral was built. The first had been contemporary 
with the device at Padua, but of it only a giant mechani
cal rooster and a few other pieces survive. The third dock, 
built in 1542, became the wonder of Europe because of 
its perfect and complete representation of astronomy 
and its impressive size and because of the superior 
workmanship that kept it going without the long periods 
of breakdown that must have attended most of its 
predecessors. 

By the end of the Middle Ages, therefore, there was 
in Europe a strong and lively tradition of fine instrument 
making and skill in 0 the design and prqduction of this 
special sort of scientific machinery. As a craft it was not 
widely practiced, for there were only a handful of prac
titioners alive at anyone time. As a skill it may not have 
been of any great economic importance; only wealthy 
monarchs and lords could afford to keep such high-class 
magicians for edification and amusement. Its scientific 
value was probably slight, for the rise of experimental 
science and the true appreciation of the role of in
struments did not come till the Renaissance was almost 
over. But as the seed from which would spring the scien-

tific revolution and the mechanics of the industrial revolu
tion, this craft was of decisive importance in the history 
of man. The skills of these men who made little gear 
wheels and designed astrolabes and equatorium com
puters were of the greatest consequence in the explosion 
of science that was to come. . 

The great cathedral clocks were also of considenlble 
importance insofar as they excited philosophers, 
theologians, and other nonscientists with the enormous 
understanding man had gained in the science of the 
universe. Their man-made regularity was an impressive . 
argument for the rationality of the universe they mod
eled. In the school of the astronomer-logicians of Mer
ton College in Oxford, considerable effort was made to 
deduce a logical and mathematical account of the laws 
of motion, but at that stage Aristotelian theory was too 
strong and mathematics too weak for this fundamental 
task. In Italy, the cosmological poetry of Dante was in
spired by Ptolemaic models of the world structure, and 
the supreme artist-scientist, Leonardo da Vinci,· made 
sketches of planetary gear models closely resembling the • 
clock of de Dondi, sketches that perhaps were made from 
the instrument itself. Leonardo's mechanical drawings on
ly at first sight appear to be those of a genius working 
in his ivory tower. It is more accurate to see his . 
mechanical devices only partly as original inventions and 
to remember that he was deeply fascinated with fme 
mechanical instruments and machines that depended on 
a tradition that had come down from classical times 
through Islam and other cultures, a tradition in which 
clockwork and astrolabes were all part of the story of 
man's effort to embody mathematics for pleasure and 
profit in tangible objects. 

Renaissance instruments and computing 
devices 

Two great forces dominated the Renaissance of science: 
the availability of the printed book and the rise of scien
tific practitioners. The printed book gave new access to 
the scientific texts of antiquity and brought them before 
a different and larger audience than there had been for 
the precious manuscripts held by the universities and 
monastic institutions. At the same time the book made 
easier the spreading of new knowledge around Europe, 
and the whole pace of learning suddenly quickened. The 
scientific practitioners were the heirs of the old craftsmen 
who had made the clocks and astrolabes and quadrants 
and sundials during the Middle Ages. 

With the Reformation, which altered the social pattem 
of much of Europe, and the rise of the guilds, which 
regulated and nourished the workers in craft industries, 
there gradually arose a more secure and massive scien
tific instrument making industry. In Europe it was first 
seen on a large scale in Nuremberg, where Regiomontanus 
settled in 1472 and founded a scientific printing press, 
an instrument workshop, and an observatory. Instrument 
making spread to the nearby city-state of Augsburg, and 
in the sixteenth century and part of the seventeenth, these 
two cities straddling the great trade route through Europe 
from Italy to the Low Countries were the chief centers 
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for scientific craftsmanship. There lived the great 
dynasties of fme metalworkers who made astrolabes and 
compasses, surveying instruments, and clocks and 
watches. To them came the professors and the mathemati
cians, the princes of Europe, and the dealers in books 
and manuscripts. By the middle of the sixteenth century 
Tycho Brahe could fmd only in Augsburg workmen cun
ning enough to build the new precision instruments he 
needed for the restoration of astronomy; toward this end 
in ensuing years he diverted a large part of the wealth 
of Denmark to the craft guilds of that city. 

From about 1540 the crafts began to establish 
themselves in other centers as local conditions permitted. 
A most active group grew up in Louvain at the north end 
of the trade route, where it was inspired by the noted 
astronomer Gemma Frisius, the cartographer Gerardus 
Mercator, and the family of Arscenius, nephews of Gem
ma. In Germany and Flanders, good brass plate was 
available for the manufacture of instruments, but in 
England it had to be imported until Queen Elizabeth 
decided it would improve the safety of the realm if brass 
cannon could be cast at home. After about 1580, good 
brass sheet was made in England, and from that date there 
was a great increase in the making and using of in
struments. In England arose other particular develop
ments that gave impetus to the mathematical practi
tioners. The redistribution of monastic lands under Henry 
VIII and the golden age of maritime exploration under 
Elizabeth ushered in a period when surveyors and 
navigators were much in demand and the country needed 
every man who could make compasses and survey tools. 

Thus by about 1580 there were cities in Europe where 
flourished dozens of workshops full of craftsmen and ap
prentices making fine scientific machinery for 
astronomers and amateurs, surveyors and navigators, and 
gunners and gaugers. Great ingenuity emerged as artist 
vied with artist for the production of some instrument 
like a cannon level with a built-in set of SCales that enabled 
one to compute the range of balls of different weight and ' 
calibre. Further advances were made by those who sought 
to bring the ancient instruments to a new state of perfec
tion; one could not work for Tycho Brahe without find
ing out what it meant to squeeze the design of a measur
ing instrument closer and closer to make room for that 
next decimal place. Another fine example was the 
noteworthy and almost prophetic improvement made in 
Augsburg when the old Vitruvian taximeter was adapted 
so that it could record an entire journey on paper tape. 
The tape moved steadily forward as the wheels of the car
riage turned, and once every few turns a compass needle 
pressed into the paper to indicate the direction of the car
riage at that moment. All one had to do to survey an 
estate was drive round it, come home, and make a map 
from the impressions of the needle in the tape. It was 
another three hundred years before paper tape came in
to general use in instruments, first for the recording 
telegraph and later for electronic calculating machines . 

The scientific practitioners of the sixteenth and seven
teenth centuries are the unsung heroes of the scientific 
revolution. Few are known beyond their signatures on 
the instruments they made, their advertisements in scien
tific books and newspapers of lessons offered in survey-
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ing and navigation, and an occasional certificate of mar
riage or death or of bankruptcy or taxation. For the most, 
part their names are not famous for scientific theories 
and innovations; the glory has gone to their patrons, the 
users and designers of instrumental techniques. Never
theless, much of the steady advance of experimental tools 
and computing devices was due to their skill and special
ized trade, and much of the opportunity for improvement 
came from the increasing demand for these anonymous 
practitioners, who gained a marginal living from mak
ing maps of estates, charts of the seas, and inventories 
of wines and oils. It was the gaugers and gunners and 
such men who used instruments the most and who thereby 
made them accessible to professors of astronomy and 
mathematics. 

The scientific practitioners of the 
sixteenth and seventeenth centuries-the 
instrument makers, surveyors, navigators, 

and the like-are the unsung heroes 
of the scientific revolution. 

Calculating instruments in the 
scientific revolution 

Just before the dawn of the seventeenth century the 
art of making technical computations for dialing, gaug
ing, and gunnery became so important and widespread 
that several instrument makers in several countries began 
making special ruled scales that were designed to make 
such measurements and calculations more easy. One of 
the earliest intruments of this kind was made by Hum
phrey Cole, a north country Englishman who was the first 
to apply himself to the craft in London. In the 1580's 
he made several such scales, including two folding rules 
0:1 which were engraved all the calibrations needed by 
a master gunner . 

The idea of special scales was in the air all over Europe, 
and among others it seems to have occurred independently 
to the young Galileo, who had not yet (ca. 1590) achieved 
fame from his telescopic observations, theories of 
mechanics, and discussion of the Copernican doctrine. 
But he had already tasted that love for scientific in
struments that later enabled him to make a telescope on 
the strength of nothing more than the rumor that such 
a device had been made in some unknown way by a 
Dutchman, and to design just before his death the pen
dulum clock that brought the efficiency of mechanical 
timekeeping to a new pitch of excellence. ' 

Galileo's calculating instrument was called by him a 
geometric and military compass, though later it became 
known as a sector. It was probably the most widely used 
scientific computing device until it was replaced by the 
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GAll LEO'S COMPASS allowed calculations to be worked on 
engraved scales. The compass was opened to some fixed angle, 
and distances on the scales were transferred with a pair of 
dividers-in this way, simple proportions such as alb = cld could 

slide rule in about 1800. The sector comprised two bars 
of brass, ivory , or some other suitable material joined 
by a hinge so that they could be opened like a folding 
rule. Along each bar, running radially from the hinge, 
were engraved scales, with the scales of one bar mirror
ing those of the other. There were often other scales run
ning along the length of the bars, filling in space that 
might otherwise have been wasted. 

In use the sector was operated in conjunction with a 
pair of dividers that were used to transfer distances on 
the scales . The principle is the simple one of similar 
triangles. The bars were opened to some fixed angle, and 
the pairs of scales enabled one to work simple propor
tions such as al b = c/ d, so that one could in one step 
work out any combined multiplication and division such 
as a = be/ d. Furthermore, unlike the slide rule with its 
logarithmic scales, the sector allowed distances to be 
added by a mere extra step of the dividers so that one 
could make calculations such as bc/ (d + e). The greatest 
refinement was that which made it possible to mark the 
sector with scales other than those for simple numbers. 
For example, a pair of scales marked with distances pro
portional to the squares of the natural numbers could be 
used for computations of the form 

and scales marked in square roots , cubes, and 
trigonometric and other functions enabled one immediate
ly to compute quite complicated forms of almost any sort. 

be determined. Galileo's instrument later came to be called a sec· 
tor; it was probably the most widely used scientific computing device 
of the seventeenth and eighteenth centuries. (Photo courtesy Adler 
Planetarium, Chicago.) 

Unfortunately, Galileo did not reap the benefit of this 
invention he had set store by. Although he employed an 
instrument maker who lived in his house and produced 
many copies of the sector that were presented to likely 
patrons and the learned of the country, he soon became 
embroiled in a priority dispute of the kind that plagued 
the lives of pioneers in the scientific revolution. Another 
man claimed the invention as his own, and the resulting 
storm of calumny and bitter rivalry quite overshadowed 
all potential gains . The sector, however, reinvented several 
times and improved by each maker adding special scales 
of his own devising, became a standard instrument. It 
was issued as late as 1900 in navigation and drawing in
strument sets made for the British Navy. 

In the early decades of the seventeenth century the 
world saw the invention or discovery of that powerful 
aid to computation, the logarithm, made twice by in
dependent workers. One of the inventors was Jubst BUrgi, 
clock maker at the court of Rudolph II, Holy Roman 
emperor and patron of all scientific and pseudoscientific 
artisans. BUrgi devised in 1611 and published nine years 
later a table that we would now call a table of an
tilogarithms of integers. His publication was in part 
forestalled by the appearance in 1614 of a book by John 
Napier, Laird of Merchiston, a work so influential that 
it went through six editions in as many years . 

In 1617, when logarithms had already begun to revolu
tionize astronomical calculations, Napier devised yet 
another popular aid to computation, the little rods now 
known as "Napier's Bones," each of which bore a 
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NAPIER'S BONES, devised by John Napier in 1617, consisted 
of small rods, each of which bore a multiplication table for a par· 
ticular digit. With a set of these bones, one could pick those cor· 
responding to a given number of many digits, lay them side by side. 
and read off the result of multiplying the given number by any other 

multiplication table for some particular digit. With a stock 
of such bones one could pick those corresponding to a 
given number of many digits, lay them side by side, and 
read off the result of mUltiplying the given number by 
any other digit. In this way multiplications could be per
formed in an almost automatic fashion without the mental 
labor of remembering and applying the multiplication 
table. At a later period special bones were added that 
made possible the semiautomatic calculation of squares 
and square roots on the same principle. 

Hardly had Napier's Bones been invented than another 
striking advance was made. Edmund Gunter, a mathe
matical instrument maker of London, produced in 1620 
a scale engraved with numbers and divided proportionally 
to the logarithms of those numbers. With such a scale 
one could use a pair of dividers (as with the sector) to 
multiply and divide numbers by adding and subtracting 
the distances along the scale. By 1622, William Oughtred. 
another mathematical practitioner and teacher, had ap
plied Gunter's scale to a circle, with the dividers pivoted 
at the middle-he called it a "circle of proportion," and 
in fact it was in modern terms a circular slide rule. 

Like the sector, the slide rule was reinvented and im
proved many times. Scales were set up as circles and 
spirals, as pairs of straight lines, and as quadruple arrays. 
Special scales of all sorts were added and slide rules were 
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digit. In t hi, illustration, one can determine the result of multiply· 
ing 2h.0'; ') hy 7, ror example. The answer, 182,343, is read from 
the di 1· ~ l ln. lIs, working right to left and carrying where appropriate: 
3/11 + h I J .,. 2/2 + 0/4 + 411 yields 3/4/3/2/8/1. (Photo courtesy IBM 
Archi , c' . Armonk. New York.) 

produceJ fo r special purposes of astronomy and naviga
tion and fo r gauging the strengths of spirits, the weight 
of metals, and the reactions of chemistry. The earliest 
known exa mple of the basic modern type with a single 
strip sliding in a slot is preserved in London and was made 
by the ot herwise unknown Robert Bissaker in 1654. 

Alon g with this activity in the art of scientific calcula
: ion th ere began to be a renewed interest in that of com
mercial ar ithmetic, which till then had remained satisfied 
with ciphering with modern numerals on paper rather 
th an on counting boards . The new commercial arithmetic 
had ~\\"ept through the trade centers of Holland, 
Frank fu rt , Lyons , and London, and it took merchants 
and th eir clerks some time to adjust to the new facility 
o f lk ci mal notation and written numbers. 

Pro ba bl y the first simple step toward the mechaniza
tion of commercial arithmetic was taken by William Pratt, 
\\"h o publi shed in 1617 a book called the Arithmetical! 
Jell 'ell, into the cover of which was bound a little ivory 
tab le with brass sliders that one could push around with 
a st\'lus so that operations in arithmetic could be per
for med without writing numerals. The Jewell was an 
elementary device that contained no gear wheels or mov
In g pa rts other than those which indicated the numbers 
and fr actions. It was a cumbersome little piece, probably 
more difficult to work than the old counting board, but 
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SCHICKARD'S CALCULATING CLOCK of 1623 was prob· 
ably the first true mechanical calculator. It could multiply two 
numbers by means of a system of rods and gears and an automatic 
carrying mechanism. Its uneven gear teeth, however, made it slug· 

its invention signified a mounting interest in all forms of 
calculation, and the practitioners were losing no chance 
to make ingenious devices that would satisfy the public 
demand. No less a person than Thomas Harriott, 
navigator and man of court, posed for his portrait with 
an example of the Jewell before him . 

The coming of true mechanical calculation 

By the middle of the seventeenth century the art of 
designing and building aids to computation was , as we 
have seen, in a particularly active ferment. This was the 
heyday of the scientific revolution, when social forces 
were gathering for the foundation of the first great na
tional academies of science, when important mathe
matical techniques were being developed , and when new 
types of scientific instruments were allowing man to per
form observations and experiments in glorious and in 
spiring profusion . Clock making was by then a particular-

gish and unreliable. Descriptions of the machine were only recently 
discovered; the device pictured here is a modern reconstruction. 
(Photo courtesy IBM Archives, Armonk, New York.) 

ly highly developed craft, and the status of the great 
astronomical clocks of the cathedrals of Strasbourg, 
Prague, and dozens of other places was by now so marked 
that Boyle was drawn to the mechanical philosophy after 
having been suitably impressed with the spectacle at 
Strasbourg. Hundreds of seventeenth-century theologians 
were beginning to espouse the philosophy later so well 
expressed by William Paley, the theory of the universe 
and everything within it as a highly complicated 
mechanism, with God as the master clockmaker, the 
author and initiator of this mechanical masterpiece . 

At this crucial point around the middle of the century 
a crucial step was taken, a step that brought together 
scientific calculation and its clockwork on the one hand 
and commercial ciphering and its counting boards on the 
other. This step was actually taken not once, but many 
times in many ways. 

The first example of this joining of the scientific and 
commercial seems to have been a calculator made in 1623 
by Wilhelm Schickard, professor of mathematics in Tii-
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PASCAL'S CALCULATOR worked by means of a series of 
toothed wheels on which gil'en numbers could be set in turn, These 
wheels communicated their totals by register wheels linked to them. 
The heart of the machine was a device for carrying tens, Pascal 
del'ised his first calculator in 1642, when he was 19, and made 

bingen, He called it a "Rechenuhr," a calculating clock, 
and described it in a letter to the great astronomer, Johan
nes Kepler. The machine was apparently not very satisfac
tory in its action since its gear teeth were uneven and slug-

· gish and sometimes caused it to miss a count or make 
two counts instead of one. Nevertheless, it deserves a place 

, as the first true digital computer, theoretically able to 
multiply two numbers by purely mechanical means-by 
a system of rods and gears and an automatic carrying 
mechanism for moving tens to the next highest column. 
So far as is known, this device had no influence on any 
other later machine designer-Schickard and all his family 

· died of the plague in 1635, and Kepler apparently did not 
, make use of the information contained in the letter that 
· is now the only evidence that this machine was ever de

vised. Possibly this or some other similar machine became 
known in principle, for Johann Ciermans, in Diseiplinae 
Mathematieae, a book published in 1640, mentions the 
existence of a machine with wheels for mechanical 
multiplication and division, but gives no details from 
which ' to identify or further describe it. 

The next and most famous step was taken by Blaise 
· Pascal (1623-1662), mathematician , scientist, philosopher, 

theologian, and master of prose. In 1642, when he was 
19, he devised a completely automatic adding machine 
that worked by means of a series of toothed wheels on 
which given numbers could be set in turn. These wheels 
communicated their total by register wheels linked to 
them. The wheels could be turned in both directions so 
that both additions and subtractions could be handled. 
The heart of the machine, the most difficult feature, was 
the device for carrying tens to the next column; unfor
tunately, it appears that even with the best workmanship 
obtainable, the ratchet system employed was not satisfac
tory in use. It is said that Pascal originally designed a nd 
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additional models thereafter. The one shown here includes two 
spl'Cial wheels for handling sums of money-~50us and deniers. Note 
that 20 dil'isions are provided for saus and 12 for deniers. (Photo 
courtes~' IBM Archives, Armonk, New York.) 

mad e tli e machine to help his father keep accounts in his 
tax office, a nd that once this was done his interest re
main ed ket: n and he built several additional devices, each 
of theri) Jifferent. Some had a capacity of six digits , 
oth(~~ ( ~ eight; some dealt with numbers only, others had 
speci :-. i ·::heels to handle sums of money, in which case one 
need ~d : 2 and 20 divisions to the wheel for handling sous 
a nd den iers. In 1647, five years after the first m achine 
had been made, Pascal obtained the privilege of patent 
for his (!,:v ice, which thereafter, being well known by vir
tue of ' " inventor's fame, was many times adapted and 
used. It \\ as given a complete description in Diderot's En
eyclopedip, 175 1, and became traditionally accepted as 
the first of the new line of geared digital computers. 

A series of three 'calculating machines, one of them 
rath er like tha t of Pascal but apparently developed in
depend ent ly, was invented in the 1660's by Sir Samuel 
Morl a o:d . Master of Mechanics to Charles II. The first 
of these . invented in 1663 a nd made in the following year 
by Henr y Sutton, noted instrument maker, and Samuel 
I\:nib b. clock maker, was an analog calculator for 
trigonometrical problems. Finely graduated scales and 
protrac tors could be arranged to form a triangle, the sides 
and ang les of which could then be measured. As an added 
refillL'ment the device could be set to work as a Galilean 
secto r. and in this way multiplications and divisions could 
be perfo rmed graphically. Another model of the same 
general design was made by John Mark, apprentice to 
Sutton. in 1670. 

\ '!oreland' s second machine was similar to that of 
Pascal. It was invented in 1666 and made for him by 
Humphrey Adamson, a skilled craftsman who was one 
o f the first makers of the pendulum clock designed by 
1-1 uygens. This machine used little wheels, each of which 
had a simple projection that turned a companion wheel 
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LEIBNIZ CALCULATOR of 1694 had two essential elements
a collection of pin wheels arranged for adding, and a system of 
stepped cogwheels that allowed any number of teeth from none 
to nine to engage with the adding section. This latter element was 
designed to be movable so that it could be slid to follow decimal 

at each revolution so as to carry the tens; the carrying 
was not automatic, however, for the operator had to 
remember to add the extra digits indicated on the aux
iliary dials. Like Pascal's, this adding machine was 
specially designed for adding sums of money, with wheels 
provided for shillings (up to 19) and pence (up to 11). 
As with so many other inventions, a priority dispute 
arose-Robert Hooke, the mechanical genius of the Royal 
Society, declared this device to have been stolen from his 
work. And Samuel Pepys, with his usual candor, recorded 
in his diary for January 1668, that Lord Sandwich had 
just acquired one of Morland's machines for "casting up 
sums of £.s.d. [pounds, shillings, and pence) which is very 
pretty but not very useful." 

A description of the third calculator, which Morland 
claimed to have invented earlier, was not published till 
1673 when it had already been forestalled by the 
altogether superior device invented by Leibniz. Morland 
independently applied himself to the obviously central 
problem of mechanical calculation, that of making a 
digital machine that would multiply automatically . He 
achieved only part of that automation, using an arrange
ment similar to that of Napier's Bones, a series of small 
discs that could be picked out and set by hand. Again 
it was a pretty idea, but not quite perfect enough to be 
useful. 

A fundamental new design for a multiplying computer 
was devised by Gottfried Wilhelm Leibniz (1646-1716), 
who shares with Newton the honor of having laid the 
mathematical foundations of both differential and in
tegral calculus. Perhaps it is not entirely coincidental that 
both Pascal and Leibniz were philosophers, theologians, 
and mathematicians as well as incidental inventors of im
portant calculating devices. Besides their immediate 
motivations-Pascal and his father's office work, Leib
niz and the tedious calculations of the new 
mathematics-they were both deeply immersed in the 
renaissance of the ancient tradition. The Cartesian 
theories, the rise of the technical arts, and several other 
factors had put new emphasis upon the old idea of the 

places in multiplication. As was the case with other seventeenth· 
century designs, the concept of this machine was ahead of the in· 
strument making capabilities of its day. (Photo courtesy IBM Ar· 
chives, Armonk, New York.) 

glory of manufacturing automata to replicate the struc
ture of the universe and the mechanisms of man and 
beast. Hence, what was more natural than to attempt a 
machine to replicate one of man's highest intellectual 
achievements, mathematics? In many ways this attempt 
was a crucial experiment that tried to show that at least 
some mathematics could be performed automatically, 
without the need of divine understanding. 

Leibniz invented the machine in 1671 at the age of 25, 
but only two machines seem to have been made, and those 
not until 1694 and 1706, respectively (only the first has 
been preserved). The machine had two essential 
elements-the first, a collection of pin wheels arranged 
for adding, was similar in principle to Pascal's arrange
ment; the second, a new feature of stepped cogwheels, 
could be moved so as to allow any number of teeth from 
none to nine to engage with the adding section. The 
second element was movable so that it could be slid to 
follow decimal places in the multiplication . 

Although the machine of Leibniz represented the final 
achievement of a completely automatic machine capable 
of all arithmetical operations, it was not a practical solu
tion. In spite of lavish expenditure, the technology of fine 
instrument making could not yet reach the precision that 
was essential, and machines like those of Pascal and 
Morland remained little more than pretty toys. It was 
more than a century before the advanced machine design 
of the nascent industrial revolution could make effective 
the basic achievement of the ingenious mechanics of the 
seventeenth century . 

The coming of practical calculating machines 

By the beginning of the eighteenth century, the physical 
sciences in general and calculating machines in particular 
had cleared their first decisive hurdles and settled down 
to a less eventful progression . Important advances there 
certainly were, but in many fields one senses something 
of a lull between the intense pace of the scientific revolu-
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tion in the seventeenth century and the equally intense 
pace of the industrial revolution in the nineteenth century. 

The seventeenth century had seen all the crucial steps 
taken in bringing together the diverse traditions from 
which had sprung the concept of the calculating machine. 
There were the concepts of commercial arithmetic on the 
one hand and of mathematical science on the other; there 
were the idea of automata and the special craft of the 
instrument maker. The art of the metalworker had tri
umphed, but in principle only. Perhaps the learned world 
was by this time convinced that machines could be made 
to calculate. However, if machine calculation was to 
be more than a philosophic triumph, it would have to 
be shown that machine and man could work successful
ly together. The calculator would have to become 
something more than a pretty toy; it would have to be 
an engine fit for commercial use and for mathematical 
research. 

The story of eighteenth-century calculating devices is, 
for the most part, one of experiments which ran through 
all the possible variations on the inventions of Pascal, 
Morland, and Leibniz; it is one of all the ingenious art 
of the instrument maker brought to bear on the noble 
end of mechanized calculation. A world that had but 
recently experienced the Newtonian theories, which had 
cut like a knife through past problems and had revealed 
the inexorably determined causal laws of universal 
mechanics, could take readily to the concept of a machine 
whose very soul was mathematical. 

Mechanic after mechanic built his chosen form of 
machine, expecting fondly to have created a device that 
would free man from the drudgery of arithmetic. Again 
and again the experiment was successful only in the eyes 
of the inventor, for the demands of precision engineer
ing proved always to be beyond the craft techniques of 
custom-built instruments and clocks. Thus, although there 
were repeated attempts to make a calculating machine that 
was not merely theoretically sound but practical as well, 
they all missed the mark. By the end of the eighteenth 
century, the general ambition was inclining toward the 
theoretical p'erfection of the machine so that it could 
undertake more and more complicated mathematical and 
mechanical functions. Only when this love of mechaniza
tion had run its course did interest revert to practicality 
in commerce. 

If one considers the simple adding machine as designed 
by Pascal and, in an inferior form, by Morland, one may 
note a continuous series of adaptations of principle, and 
of rather ineffective improvements in mechanical design. 
In 1678, Grillet in France combined such an adding 
machine with a set of Napier's Bones that could be rotated 
on cy¥nders; the apparatus had no loose parts and could 
be carried in the pocket. Then, in 1725, Lepine attempted 
to improve the Pascal machine by modifying its most 
troublesome element, the device for carrying tens. This 
was followed in 1730 by at least three attempts by Hillerin 
de Boistissandeau to remedy the same fault and to 
minimize the friction that was another disturbing ailment 
of this class of machine. 

Another modification, devised by C. L. Gersten of 
Giessen in 1720 but not published till 1735, substitut~d 
a linear array of numbers working a rack for the pm 
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wheels used by Pascal. In this it reverted to a form 
resembling the first abortive device made by Schickard. 
More ultimately successful was a carrying mechanism in
vented in 1751 by Jacob Pereire, a teacher of deaf mutes. 
He devised a scheme whereby register wheels were placed 
on a single axis and tens were carried by a spring-loaded 
peg made to project sideways from one wheel to the next. 
This is still the basic mechanism of most mechanical 
counters such as those that register the distance traveled 
by a car. 

The Leibniz machine also resulted in a constant stream 
of improvements and innovations in methods of effect
ing multiplication by repeated addition. On his most suc
cessful machine Leibniz had used the device of a stepped 
gear so arranged that by sliding the gear sideways there 
could be engaged during a revolution any number of teeth 
from none to nine. Another way of doing the same thing, 
also proposed by Leibniz, was through the use of an ad
justable pin wheel from which teeth projected or not ac
cording to which number from none to nine was to mesh 
with the neighboring counting mechanism. 

The adjustable pin wheel was used in a mUltiplying 
machine built by G. Poleni in 1709, but this calculator 
proved not much better than Leibniz's. A third ~ethod, 
still more complicated, for varying the number of teeth 
engaging at each turn of the counter was proposed by 
the eminent mechanician Jacob Leupold in 1727, though 
he died before the design could be embodied in a machine. 
Leupold's principle was to disengage the gear wheel when 
the required number of teeth had meshed with the 
counter. He effected this in a particularly elegant fashion 
by mC:1ns of a little rack of nine teeth which could be 
brush~d past the counter wheels and raised so as to press 
against them for a greater or shorter distance according 
to thc required number of teeth. Even though Leupold 
never made this machine, the publication of his proposal 
in a popular and important book on mechanical devices 
drew considerable attention to the art of designing 
machines to perform mathematical marvels, and it must 
be reckoned as a most influential piece of work. 

The ncxt consequential improvement of the Leibniz
type machine was made by Charles, Viscount Mahon 
(later Earl Stanhope), who was also responsible for several 
other advances in calculator technology. In 1775 and 1777 
he made two machines, the first using the stepped gear 
principle of Leibniz, and the second being a more com
plicated variant of the Leupold scheme in which the cogs 
were disengaged after the required number of teeth had 
passed. Although neither machine embodied basically new 
mechanical systems, their rugged construction made them 
considerably more reliable than any hitherto. Thanks to 
the lapse of time, there had been an opportunity for 
technical skill to catch up with the inventive capacity that 
before had always outstripped it. 

Stanhope, as a wealthy amateur and man of science 
with catholic tastes, was able to enjoy the services of 
James Bullock, one of the best mechanics of the day, and 
when the job was done could move on to other things. 
Thus, although his machines showed that mechanical 
multiplication could be achieved in a fairly reliable way, 
they were not pursued into general popularity. Stanhope 
later turned his attention to a different sort of apparatus 
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HAHN'S CALCULATOR was one of an early group of machines 
built on sound mechanical principles. Hahn made his first calculator 
in 1770·76, and he and his son improved upon the design thereafter. 
A fourth model using the stepped cylinder principle of Leibniz proved 
capable of giving consistently correct results with numbers of 

that was also a landmark in mathematical machines . He 
devised and published a description of a simple demon
strator that mechanized logical relations and showed by 
a pair of scales at right angles to one another the effects 
of combining two probabilities . There had been other 
visualizations of logical relations before this (compare, 
for example, the circles used by Euler to demonstrate 
overlapping classes), but Stanhope's Demonstrator mark
ed the beginning of a new attitude toward computers; they 
were to be considered not just simple arithmetical 
machines but mechanical embodiments of more general-

up to twelve digits. After Hahn's death, members of his family con· 
tinued making the machines until about 1820. The calculator pic· 
tured here was made by Hahn's brother·in·law, Schuster, in 1792. 
(Photo courtesy IBM Archives, Armonk, New York.) 

ized mathematicological processes. Stanhope ' s two 
calculating machines came eventually into the possession 
of Charles Babbage, who was to continue this tradition 
and bring it (at least on paper) to the very apex of perfec
tion; in many ways his work proceeded from the sound 
mechanical basis laid down by Stanhope. 

In Germany, too, a multiplying calculator based on 
sound mechanical principles had been made before the 
end of the eighteenth century. The first step toward this 
success was taken in 1770-76 by Mathieu Hahn, Vicar of 
Echterdingen, who made at great expense a circular 
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DE COLMAR'S ARITHMOMETER was the first calculator put 
into general commercial production. It was manufactured from 
the early 1850's well into the present century. The Arithmometer 
employed the Leibniz stepped gear, which is used with a system 
of. counting gears with automatic carrying. The secret of its ac· 

machine similar in appearance to that of Leupold. Later, 
improved models were built by Hahn and his son until 
a fourth model using the stepped cylinder principle of 
Leibniz proved capable of giving consistently correct 
results with numbers of up to twelve digits. While these 
improvements were being made, another German 
engineer, J. H. Muller of Giessen, armed only with a 
knowledge of the published external appearance of 
Hahn's machine, set out to design a similar but improved 
version, which he constructed in 1783. 

It is curious that upon the attainment of mechanical 
reliability the science of calculating machines seems to 

have regressed momentarily, as if it was gathering strength 
for a final burst of mechanical ingenuity that would put 
the design in such a form that it could be manufactured 
commercially and made generally available for the first 
time. This great step was taken by the Chevalier Charles 
Xaviei Thomas de Colmar (1785-1870) in 1820, though 
the first patent models were not made before about 1850. 
Soon afterwards the machine was put into general com
mercial production that continued well into the present 
century. 

This machine, which at last achieved the success of 
general use, was based on the Leibniz stepped gear, which 
it used in conjunction with a simple system of counting 
gears with automatic carrying. The secret of its success 
was probably the use of many springs and other con-
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curac~" W;l~ probably the use of many springs and other contrivances 
to dl'Stro\ ,he momentum of the moving parts so that they would 
not carn J'c'vond their intended point. (Photo courtesy IBM Ar
chil"b . "\ nnonk, New York.) 

trivancc5 to destroy the momentum of the moving parts 
so that th ey would not carry beyond their intended point. 
Such ca c~v i ng was a frequent failing of earlier machines. 

De C0lmar's Arithmometer, as it was cailed, by its very 
success constituted a branchpoint in the evolution of 
caiculatir.g machines. Until that time, although commer
cial success and scieittific usefulness had been the twin 
goals, design and construction had always rested in the 
hands of ;;cientists, mathematicians, and mechanicians 
mbued wi th the ancient obsession of mechanizing the 

mathematics of the world around them. Now, with the 
coming o f the industrial revolution, the agents changed 
in character. Formerly scientists had worked with skilled 
artisans who made only scientific instruments' now the 
calcula ting machine was just one of several ~mbi;ions 
cheri shed by that class of ingenious inventors which saw 
the birth of the steam engine, of interchangeable parts, 
of power tools, and of other evidences of a burgeoning 
Industria lism that was making nations richer than ever 
before . 

Scientists and mathematicians were still most concerned 
with the perfection of the device, but now they had at 
thm disposal all the skills of professional machinists ac
Cu stomed to high precision, reproducibility, and other 
techniques for successful commercial mass production . 
. With the Arithmometer of de Colmar, which capital
Ized on these gains, the road divided _ Although there 
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developed a main trend toward the perfection of a cheap 
and reliable machine for commercial use, a second line 
of development emerged and became distinct. Accepting 
that the basic utilitarian calculating machine had arrived 
in principle if not in fact, scientists and visionaries could 
now dream of a machine that would not only perform 
the simple mechanical operations of arithmetic but reach 
further, into the complexity of mathematical thought that 
seemed so peculiarly human. Perhaps in doing this they 
were merely looking at the same problem that had con
fronted both the first makers of astronomical protoclocks 
and the philosophers Pascal and Leibniz. Now, with the 
minor goal having been achieved or nearly achieved, the 
stakes had been raised and the designers of computing 
machines began to envisage that the whole of 
mathematical thought-perhaps even al/ human 
thought-might one day be encompassed by a machine. 
The would-be inventor of such a machine might well be 
fascinated by the concept. From his thought alone might 
grow the "design of an engine that would outthink the best 
human minds. 

Thus, during the remainder of the nineteenth century , 
one group took a step back; to the simpler adding machine 
and eventually made it a common article of office fur
niture, while the other group-though it continued for 
a vrhile to move the multiplying calculator toward the 
mass production that would make it a general aid to scien
tists-bent its efforts toward mathematical machines of 
different content. In this last class we must next consider 
the prodigious Charles Babbage. 

The mathematical engines of Babbage 
and Scheutz 

Charles Babbage (1792-1871) had the misfortune to in
vent the modern computer in an age when there were only 
painstakingly constructed gear wheels grinding too slowly 
to perform the mighty task he envisaged. He was a 
remarkable prophet of the techniques of operational 
research. He had the additional misfortune to be a 
believer in government support of science at a time when 
government still took fright at the thought of spending 
hundreds, let along thousands, of pounds on a project 
that did not promise a fairly rapid return. It was his ex
perience to deal with a government that took umbrage 
every time he abandoned a design that had cost years of 
work to begin a new line that promised to be more effi
cient; it was an experience that made a once convivial 
fellow into an embittered old man, an experience that left 
a wondrous machine only partly built. 

Babbage was born in Devonshire of a tolerably wealthy 
family whose fortune was eventually expended upon his 
passion for the calculating engine. This passion, accord
ing to the earlier and more reliable of his two 
autobiographical accounts, developed around 1822, some 
five years after he had left Cambridge, where he had 
received his training as a mathematician in company with 
such distinguished colleagues as John Herschel and 
George Peacock. These three had founded the notorious 
Analytic Society of Cambridge to combat the dot-age of 
Leibniz and support the de-ism of Newton- these two 

terms referring to the two rival symbolisms used in the 
differential calculus. According to the account, Herschel 
and Babbage were laboriously correcting some tables that 
had been computed professionally for the Royal 
Astronomical Society. At one point, weary of the errors, 
Babbage expostulated, "I wish to God these calculations 
had been executed by steam." "It is quite possible," 
replied Herschel, innocently setting Babbage on the road 
he was to follow so long and so far. 

Thinking over the idea, Babbage became convinced that 
it should be possible to make machinery that could com
pute by successive differences and set type automatically 
so that tables could be printed without the errors pro
duced by the intervention of an operator. He rapidly 
published papers describing his idea, and within a year 
he had extracted a rather noncommittal promise from the 
Chancellor of the Exchequer that the government would 
support for three years work leading to the production 
of such a machine. He worked for four years, ended up 
with only a series of scrapped and incomplete rejects, and 
then, on his doctor's advice, abandoned his work and 
went on a tour of Europe. Coming back in 1828, he 
sought and founa further support and sei about making 
more parts for his Difference Engine, as he called his 
machine. Alas, by 1833 Babbage had had a fiery quarrel 
with Clement, his engineer, and after a work stoppage 
lasting a year they parted, apparently not very amicably. 
While work was stopped Babbage conceived a new sort 
of machine that would transcend the Difference Engine 
and all other mathematical machinery. It was conceived 
in an exciting new fashion, for it would use a principle 
-that we now call programming. The basic notion of this 
Analytical Engine was the use of a series of punched cards 
to tell the machine what operations to perform at any 
stage in the successive calculations. Such punched cards 
had been first designed by Falcon for textile machinery 
in 1728, had been brought to a peak of impressive perfec
tion in the Jacquard loom, and had already been used 
by Vaucanson in his daring construction of a mechanical 
duck and other automata that performed in a most lifelike 
fashion, running through a series of operations in a long 
and complex cycle that almost seemed to involve free will 
and thought. Inspired by this new idea, Babbage went 
again to the Treasury seeking funds for his Analytical 
Engine, which he thought it well within his capabilities 
to devise. 

From 1834 to 1842 he argued the case, but the govern
ment proved unwilling to expend any more money after 
the £17,000 it had already put into the first effort. En
raged, Babbage worked on, but in 1848 he made yet 
another major change of course, going back to a second 
model of the Difference Engine and unsuccessfully of
fering this new wonder of the drawing board to a singular
ly unenthusiastic Treasury. 

Fortunately, in 1834 a copy of one of Babbage's ar
ticles on the Difference Engine fell into the hands of a 
far less temperamental mechanician who was inspired by 
them. A rich Stockholm printer, George Scheutz, and his 
son, with some financial assistance from their government 
and National Academy, set about building such a machine 
and brought it to a successful conclusion without the sort 
of distraction that Babbage's own fertility of mind im-
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THE DIFFERENCE ENGINE was conceived by Charles Bab· 
bage in 1822. He worked on it fitfully until about 1833, when .he 
had a fiery quarrel with his engineer, and work on the machan~ 
stopped. Babbage then conceived the Analytical Engine, a n~w 
design that would transcend the Difference Engine and all .. oth~,~ 
mathematical machinery. The new machine would include a m~1I 
for performing operations on numbers and a "store" for holdang 
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them, and would be operated by sequences of instructions on 
punched cards. Babbage transferred his efforts to this new con. 
cept and worked on it until 1848, when he again changed course 
and r~t.urned to a second model of the Difference Engine. Bab. 
ha~e lali~d 10 bring any of his machines to successful completion; 
tl;(' machinery pictured here is a portion of the Difference Engine. 
(I hOlo courtesy IBM Archives, Armonk, New York.) 
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SCHEUTZ DIFFERENCE ENGINE was successfully developed 
from Babbage's ideas. In 1834, a copy of one of 8abbage's ar
ticles fell into the hands of George Scheutz, a Stockholm printer 
and mechanician. Inspired by Babbage's plans, Scheutz and his 
son, Edward, set about building a machine. They completed a work
ing model in 1837; by 1843 they had successfully constructed a 

posed on him. They made their first trial model in wood, 
wire, and pasteboard in 1834, and by 1837 the son had 
built a working version in metal. In 1840 they had a 
machine which worked to five digits and calculated first 
differences. In 1842 this capability was extended to third 
differences, and by 1843 an automatically printing ver
sion had been successfully made. A final version incor
porating all the improvements was ready by 1853. The 
machine won a gold medal at a Paris exhibition in 1855, 
and to the surprise of the makers their most fervent ad
mirer and supporter was Babbage himself. In the follow
ing year the machine was bought for $5000 by an 
American businessman, who presented it to the newly 
built Dudley Observatory in Albany, New York. 

The difference engines of Babbage and Scheutz pro
vided a new sort of automation of mathematics. Previous 
devices had enabled man to mechanize only single 
operations-addition and subtraction in machines of the 
Pascal type, multiplication and division in those of the 
Leibniz variety. With the difference engines came the new 
concept of a continuous series of operations, of the tak
ing of differences that could be used to automatically 
build up a printed table for almost any mathematical 
(regular analytical) function that one could wish to 
tabulate. 

The Analytical Engine, only a part of which was put 
together before Babbage's death in 1871, had much 
greater versatility than the difference engines . The heart 
of the machine, or rather its brain, consisted of two sets 
of perforated cards used in a fashion similar to that in 
which were used the cards of a Jacquard loom, which 
wove a complicated, predetermined pattern fed into the 
machine by levers that "felt" the holes in the cards and 
moved the shuttles accordingly. In the analytical engine 
one set of cards acted as mill, programming the machine 
to go through operations of addition, subtraction, 
multiplication, and division in a prearranged sequence, 
while the other set of cards was a store for numbers to 

version that automatically printed results. Their final model, which 
incorporated all prior improvements, was completed in 1853; it 
won a gold medal at a Paris exhibition in 1855. To the surprise 
of the makers, their most fervent admirer and supporter was Bab
bage himself. (Photo courtesy IBM Archives, Armonk, New York.) 

be acted upon by these operations. With this technique, 
the machine not only could perform and print differences, 
but it could solve any succession of algebraic equations 
capable of numerical solution. 

The whole operation was checked and counterchecked 
in several ways to guard against accidental defects and 
malfunctions, and for this reason the whole assembly 
became almost impossibly complicated. However, the 
ideas were so sound that they may still be found in elec
tronic computers, but gear wheels were too slow and too 
heavy, too plagued by inertia and backlash, to be used 
in such fearsome arrays. 

Again, however, the stakes had been raised and suc
cess achieved-in principle. Some of the techniques in
vented by Babbage and Scheutz and embodied by means 
of the machinist's new skills remained within the useful 
tradition. They contributed much toward the later com
mercial perfection of the mechanical computing machines 
which became standard equipment on scientists' work 
benches a century later. But the grand concept would have 
to wait for the development of new electronic skills 
capable of achieving those ends for which mere metal 
wheels and bars were too inert, imperfect, and tedious. 

The modern accounting machine and 
typewriter 

The story of the calculating machine in the commer
cial office began at the same time as that of the office 
typewriter. Both machines utilized the concept of the 
keyboard, long familiar from musical instruments . This 
familiarity enabled operators to easily and effectively 
work their machines-the keyboard was obviously the 
most convenient input device for both a writing machine 
and a calculating engine. 

Although the concept was simple, the mechanical dif
ficulties were considerable. In the first place, it took much 

IEEE MICRO 



h 
it 
e 
). 

.1 

i, 

is 

d 
d 
',y 
;e 

o 
d 

l

IS 
11 
1-

~s 

'k 
Ie 
Is 
al 
,So 

:1'

~e 

Ie 
lis 
Iy 
,le 

!le 

if
ch 

ingenuity to devise linkages and mechanisms that would 
give the right effect. The first steps had been taken in 1714 
by an Englishman, Henry Mill, who obtained a patent 
for a nonkeyboard device (details unknown) to print let
ters one by one. More than a century later, in 1829, a 
similar invention by William Burt of Detroit had pieces 
of type arranged on a wheel; letters could be selected and 
printed one at a time. For the calculating machine a whole 
tradition was already in existence, but input was provid
ed by turning wheels rather than pushing keys. 

The first steps toward the keyboard seem to have been 
taken through calculators rather than through typewriters. 
As so often happens, when the idea came it came almost 
simultaneously in many countries and to many people. 
Priority seems to belong to D. D. Parmelee, who patented 
his first key-driven adding machine in 1850; the keys not 
only set the numbers to be added but provided the motive 
power for performing the operation. Parmelee was 
followed during the next few decades by dozens more of 
inventors, many working independently of one another. 
They always found that the rapid motion of so many parts 

caused overshooting through inertia. Unfortunately, an 
office adding machine was a device in which one could 
not countenance frequent errors-what advantage was 
there to a thinking machine more fallible than a second
rate accounting clerk? 

Although the adding machine proved disappointing in 
its early years, it seems to have stimulated the develop
ment of the typewriter, which, though started later, 
reached commercial production first. The big'step was 
taken by C. Latham Sholes, a Wisconsin editor, politi
cian, inventor, and enthusiast for most diverse things and 
causes, and by his promoter friend, James Densmore. In 
1867 they devised the first "literary piano," a machine 
modeled partly on an automatic numbering machine and 
partly on the action of a telegraphic key. Rapidly pro
ducing one more effective model after another and 
capitalizing on the exploding capabilities of America's 
new machine age, they reached commercial exploitation 
by 1872. Long before the decade of the 1870's had end
ed, the typewriter had taken virtually its modern form. 
As with earlier devices, and as was so common in the nine
teenth century, the next phase was jealous patent litiga
tion to gain control of a device so eminently profitable, 
and to this end several new principles of operation were 
contrived and alternate devices manufactured. 

Now the tables turned, and the commercial success of 
the office typewriter contributed to that of the account
ing machine. The prime idea apparently came to a young 
machinist, Dorr E. Felt, just before Thanksgiving l8~. 
He had been operating a planing machine with an action 
in wpich a ratchet wheel could be moved auto~aticallY 
by one, two, three, or four teeth at a time; thiS ral~hct 
was similar in design to the roller ratchet of a typewnler. 
by means of which the space between lines could be 
automatically varied. Using his holiday to make the now 
famous prototype contrived out of a macaroni box, a few 

h' led meat skewers, some elastic bands, and much w III 
wood, Felt proved that it was a workable device for caus
ing keys to operate an adding machine. By 1887 ;hle 
device, now much improved, could be patented by e I 
(at the age of 24-a typical story for the times of young 
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inventor made good), and shortly afterward his machine 
became Ihe Comptometer-a companion in offices to the 
Iypewriter and a commercial success of like magnitude. 

Now that keyboard operation had lent convenience, 
and modern machine-shop production had removed the 
bugbear of inertial overshooting, the way was clear to 
funher improvement on a commercial basis. In the 1880's 
there came an interesting combination of the typewriter 
and the calculator, the first successful machine that 
primed the results of computations and thereby relieved 
the human operator of still more of his chores. Further 
combination of the two types of machine yielded what 
has since become the tabulating machine and the 
tabulator·typewriter. 

Impron~ment in another direction enabled the Swiss 
worker. OtlO Sieiger, to extend enormously the mathe
matical u~dltlness of calculators by means of a built-in 
muitiplicat;()ll table, an innovation already worked out 
in princtpk OV Bollee. His versatile calculator, called the 
"Millionalr:.·' 'vas capable not only of addition and sub
traction hlP ,,·f multiplication and division too (though 
the laller ,:,',,:j be done only somewhat tediously). It 
became ai' :r great commercial success and found a 
place in ;,1:1\ :<,>:)ratories and engineering shops. Thus, 
by Ihe c· .' .;! 'r., 'ineteenth century commercial success 
had hl"':: '.: for every type of calculator except the 
soph!-': thematical thinking machine envisaged 
by B;II ' :ommercial use, for simple mathematical 
comf" " :u: normal reading, and for printing and 
labul.I' .:~ t-:i;:ic problems had been successfully over-
com,' - . 1('1-- was, if anything, an excess of commer-
cial ~tic. I that led to a vast number of minor 
\-an:: nO "'Hlroved" versions. 

Deve'.~ dl2nt of nondigital calculating 
devicP.'. 

In tho ";1': f:cmaining area of sophisticated scientific 
cakula: .. 'n ! il::rt~ began in the late nineteenth century a 
markl-J :, ,'; iu 'l,ward experiment with devices outside the 
\radlll,)" '" r'ascal and Leibniz. In many ways a return 
Wa\ Ilkt.!:,: ttl [he principle of geometrical devices and 
analo!! ,,;mputers that had originated with the first 
~trolJomical models. 

One 1-. pc of geometrical calculator, the slide rule, had 
a hi\lOrv G/ development reaching back to the seventeenth 
.:cnt11 rv. having been developed almost immediately after 
the dc\ ICC of logarithms came into widespread use. The 
earhc\t form~ of slide rule had been without a slider, so 
tll 'peak, Dividers were used to transfer distances on a 
rlam "'~arithmic scale engraved on a ruler. Next a cir
':lIlar ...:ale. inscribed around the perimeter of a disc and 
ha\ In!! the dividers pivoted at its center, was used. Soon 
aften .. ards the slide rule took on almost its present form, 
rrO!!rl~~tng with slight improvement to eventual mass pro
ductIon and the present day. But not until about 1900 
.lId Ihe mod I'd . ern s I e rule completely displace the sector 
;1\ Ihe prime device for all occasions-on shipboard, for 
c\ample. where rapid and approximate computation with 
malhematical formulas was employed, the sector re-
matned in u· . se until about that time. 
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THE MILLIONAIRE included the innovation of a built-in 
multiplication table. This versatile late-nineteenth-century calculator, 
designed by the Swiss worker, Otto Steiger, was capable of 
multiplication and division as well as of addition and subtraction. 

More typical of the late nineteenth century were the 
invention and proliferation of a large variety of in
struments that depended for their working order on 
precise geometrical linkages . There were all kinds of pan
tographs and other linkages for copying diagrams to scale; 
there were planimeters of ingenious construction for 
measuring the areas of curves and for graphically in
tegrating functions . Most complicated of all, perhaps, 
were the harmonic analyzers such as those which had been 
invented by Michelson and Stratton in the United States 
and by Lord Kelvin in Britain_ They were used for what 
would otherwise have been a most tedious 
computation-that of the Fourier components which 
determined tables of the tides. Seen in retrospect, these 
machines represented a search for some special means of 

It was a great commercial success and found a place in many 
laboratories and engineering shops. (Photo courtesy IBM Archives, 
Armonk, New York.) 

doing mathematical work beyond the compass of the 
relatively simple digital computers then available. As 
calculators became faster, more efficient, and more com
plicated, they swallowed up the jobs for which there had 
been special pleading, leaving room only for such simple 
and relatively inexpensive devices as the slide rule. With 
the complicated analyzers, mechanical technology had 
been successfully taken to its limit; now it was time for 
a new art to fulfill the dream of Babbage and produce 
the device that would work mathematics with all the 
adaptability of the human brain but with all the preci
sion of machinery . It would be for the new electronic age 
to achieve that rapidity of operation that could not be 
attained by historical model making and mere mechanical 
technology- • 
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Derek Price was born in Ley ton, near London, 
England, in 1922. He was educated at the local state 

schools, where he displayed an early mathematical and 
scientific inclination derived in some measure from a diet 
of science fiction magazines. He received a bachelor's 
degree in physics and math from the University of Lon
don in 1942 and-in addition to pursuing wartime 
research into the optics of molten metals-taught and pur
sued thesis work toward a PhD in physics, also at the 
University of London. Price's postdoctoral work included 
publication of four papers-three in physics and one in 
math, a patent on an optical pyrometer, a year at 
Princeton, and three years of teaching at Raffles College, 
University of Malaya, Singapore. 

In 1948, that university acquired a complete set of the 
Philosophical Transactions oj the Royal Society cover
ing the years 1665 through 1850. An unanticipated 

'Morris is currently an associate ed itor of JEEE Micro. 

di scovery concerning these volumes led Price to the for
rr.ulation and publication, in 1950, of the law of exponen
tial growth of scientific literature. Because the universi
ty library had not yet been built, Price had temporarily 
taken custody of the volumes. "I placed them into neat 
chronological piles against the bedroom wall," he re
called , " ... [and] noticed that [they] made a beautiful 
exponential curve . ... " 

Price entered Cambridge in 1950 to embark upon study 
for a second doctorate-in the history of science. Dur
in g his tenure there, he acted as honorary curator of the 
Whipple Museum of Antique Scientific Instruments and 
collaborated on a book on the history of medieval Chinese 
clockwork . (His thesis area was history of instruments.) 
One of his discoveries during this time was a holograph 
by Chaucer on the construction of a planetary calculating 
instrument. After completing his Cambridge PhD, Price 
co nsulted with a group at the Smithsonian Institution in 
the planning of their Museum of History and Technology. 
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In June 1959, Price contributed the cover article, "An 
Ancient Greek Computer," to Scientific American. t He 
described, and attempted a preliminary reconstruction of, 
a mechanism-now in the National Archeological 
Museum in Athens-found by divers near the island of 
Antikythera, northwest of Crete, in 1900. "Corroded and 
crumbling from 2000 years under the sea, its dials, gear 
wheels, and inscribed plates present the historian with a 
tantalizing problem ... [which may cause] revision of 
many of our estimates of Greek science," Price observed. 

Price described the provenance of the device-how a 
party of Dodecanese sponge fishers had found the wreck 
of an ancient ship, some 200 feet down, before Easter 
1900-and remarked that the calcified fragments of cor
roded bronze had originally been thought to be pieces of 
broken statuary. He justified the dating of the wreck to 
65 BC and noted how the inscriptions had quickly iden
tified the mechanism as an astronomical device. 

The Antikythera mechanism consisted of a box about 
16 x 32 x 9 centimeters in size, with dials on the out
side and a very complex assembly of gear wheels inside. 
Doors hinged to the box served to protect the dials, and 
on the surfaces of the box, doors, and dials were Greek 
inscriptions describing the operation of the instrument. 
Price noted in the article that "nothing like this instru
ment is preserved elsewhere . . . [and] from all we know 
of science and technology in the Hellenistic age we should 
have felt that such a device could not exist." Although 
gears had appeared in other Greek devices, they had func
tioned simply as ratio changers. The 20 gear wheels of 
the Antikythera mechanism, " ... including a very 
sophisticated assembly . . . mounted eccentrically on a 
turntable ... [which] probably functioned as a sort of 
epicyclic or differential gear system ... ," was 
unprecedented. 

The system input was via a crown-gear wheel (see A 
in the figure on page 20) which moved a large, four
spoked driving wheel (B) . This wheel in turn drove two 
trains of gears (EI-ES , K2-Kl and CI-C2, Dl-D2, B4, 
E2i-E2ii), each of which eventually led to the "epicyclic" 
turntable (via J). A number of shafts rotated dial pointers 
such that when the input axle was turned, the pointers 
all moved at various speeds around their dials. There were 
three dials, one at the front of the case and two at the 
rear. The front dial displayed the signs of the zodiac on 
a fixed scale, and a movable slip ring showed the months 
of the year. Thus, Price suggested, this dial showed the 
annual motion of the sun in the zodiac and-indirectly
the risings and settings of bright stars and constellations 
throughout the year. The more complex rear dials com
prised an upper dial with four slip rings and a lower dial 
with three slip rings. In the article, Price could only sug
gest that lunar phases and moonrise and set times might 
have been indicated on the lower dial and planetary ris
ings and settings on the upper. He thought that the device 
could have been an analog representation of the heavens . 
He also noted that clocks started as astronomical 
showpieces that also happened to indicate the time and 
that eventually the timekeeping functions took over. 
Thus, he suggested, "the Antikythera mechanism is . . . 
the venerable progenitor of all of our present plethora 
of scientific hardware ." Price later commented that 

THE ANTlKYTHERA MECHANISM wa~ rl'Cowred from t 
sea as a single corroded mass but broke into scwrdl fragments aft 
drying out. The main fra~ment (left) shows the effects of two miller 
in salt water. It should be noted that the photo wa~ taken after t 
fragment had been cleaned. Working with the cleaned fragmen ' 
Derek Price attempted a reconstruction of the mechanism. He \\ 
able to work out the joins of the fra~ments and dl-duce the gener 

"there were some only too ready to believe that the con 
plexity of the device ... put it so far beyond the sCO I 
of Hellenistic technology that it could only have bet 
designed and created by alien astronauts . . . vis iting Ot 

civilization. " 
Even though the fragments of the machine had bee 

cleaned prior to Price's research in the 1950's , the com 
sion and calcification had been so extensive that an 
reconstruction beyond that described in the 1959 artie: 
proved impossible. Then, in 1971. Price made 
breakthrough. He read that radiography co uld be use 
to see through the products of corrosion and calcific, 
tion. With the aid of Dr. Ch. Karakalo s. he was ever 
tually able to obtain a series of fine x·radiographs of th 
gears. The result was that the missing links in the gea 
trains were revealed, and Price could proceed with a mue 
more detailed reconstruction. 2 Especially important IVa 
the clarification of the structure of the differential tur n 
table, which demonstrated that the :\ntik yther. 
mechanism functioned as a portable. solarl llll/ar calel/ 
drical analog computer, certainly the first known com 
puter (albeit fixed-program) in history . The fUllction () 
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function of the machine but, because of the corrosion, could not 
obtain a detailed reconstruction. Later, he discovered that 
radiography provided a means to "see into" heavily corroded and 
calcified objects, and he arranged to have radiographs of the 
fragments made. The radiograph of the main fragment (center) 
shows the sort of structural detail that had been hidden. Here, 

the differential gear apparently was to compute the dif
ference between the sidereal motions of the sun and moon 
against the backdrop of fixed stars and thereby derive 
a phase-of-moon indication. Thus, conventional ratio 
gear trains operating separately off the crown-gear yielded 
analog inputs to the differential turntable that were pro
portional to the sun and moon positions as seen from 
earth; the differential subtracted these inputs to yield the 
lunar phase. (When sun and moon have the same zodiacal 
position, then-regardless of their abso lute positions
the moon is new; similarly, when sun and moon are 180 
degrees apart, the moon is full.) Price concluded that "the 
differential turntable is certainly the most spectacular 
feature of the Antikythera device because of its extreme 
sophistication and lack of any historical precedent." He 
suggested that the mechanism is the earliest example of 
what we now term "high technology." 

Derek de Solla Price was appointed Avalon Professor 
of the History of Science at Yale University in 1962. 

In addition to research into the history of scientific in-
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whe~is, gear teeth, pivots, and brackets were clear enough to be 
traced out in ink and later incorporated in a detailed schematic 
drawin g (right). The structural information provided by the 
radiographs enabled Price to work out an almost-complete 
reconstruction and functional description of the mechanism. (Photo, 
radiograph, and drawing courtesy estate of Derek de Solla Price.) 

struments and medieval astronomy, he worked in the 
areas of science policy, bibliometrics, and citation 
analysis . He published over three hundred papers and six 
books, including Science Since Babylon and Little 
)cience, Big Science. He was the first President of the 
International Council for Science Policy Studies. In 1976, 
Price received the Leonardo da Vinci Medal, the major 
award of the Society for the History of Technology, and 
in 1981, the John Desmond Bernal Award, in recogni
tion of outstanding contributions, given by the Society 
for Social Studies of Science. The Royal Swedish 
Academy of Sciences elected him a Foreign Member for 
Distinguished Service to Scientific Research in 1983. 

Although Price's major contribution to the history of 
science (and computers) was his 20-year quest to il
luminate the Antikythera mechanism, his work in 
establishing and analyzing the Science Citation Index 
(what he called "knowledge engineering") has been of 
more immediate impact. For example, his analysis of the 
output of researchers, showing that half the total output 
of papers in any discipline comes from a small elite of 
highly productive authors whose number is equal to ap-
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The Tower of the Winds 

Athens' Tower of the Winds, located in the Agora, 
or marketplace, near the Acropolis, is one of the best
preserved buildings of classical antiquity. Resembling 
an octagonal marble can ister, the structure was built 
in about 50 BC by Andronicus Cyrrhestes, a Macedo
nian astronomer, during the Roman occupation of 
Greece. Each face is surmounted by a carved relief of 
a winged demigod representing one of the eight winds; 
a sundial customized for each side's orientation was 
located beneath the carving. The roof was topped by 
a bronze wind vane-in the form of Triton, son of 
Poseidon-which pointed to the image of the wind that 
was blowing. 

It was the Greeks' belief in the existence of the eight 
winds and in the octagonal symmetry of the universe 
that dictated the structure's form. 

Inside the tower was a hor%gion, or hour indicator, 
powered by a constant-pressure water source. The 
power source was reset each day by draining a tank. 
The centerpiece of the mechanism was an engraved 
bronze disc which effected a model of the heavens by 
revolving clockwise behind a stationary grid of hour 
lines. Engraved upon the disk were mythological 
figures of the constellations, inc lud ing the signs of the 
zodiac. An ellipse of perforations on the disc traced 

proximately the square root of the entire group, seems 
to be an inviolable law of technicalliterature.3 And his 
recent contention that the Babylonians were the first 
"programmers," that their tablets of mathematical 
astronomy read exactly like a computer program print
out, promises further revelations of ancient technical 
sophistication.4 

One other of Price's projects deserves note. He 
reconstructed an ancient Greek water clock that had been 
housed in Athens' Tower of the Winds, an extremely well
preserved structure dating from about 50 Be. (The tower 
features prominently on this issue's cover-see also the 

the apparent annual solar path through the heavens
the ecliptic-and a sun marker was manually moved 
along the perforations to indicate the solar position 
in the heavens on the current day. The clock 's "hour 
hand " was thus the solar image, whose position 
relative to the grid was constantly changed by the 
water-controlled mechanism driving the disc. The ex
hibition was overseen by a trident-bearing statue of 
Pose idon. 

The tower showed the time via the sundials and the 
horologion, and the date via the length of the shadows 
on the sundial faces . It thus served as both clock and 
calendar. 

-L. Robert Morris 

> 
t 

interior views , above.) Under a gran! from (he National 
Geographic Society, Price and his ft:ll ow researcher, 
Joseph V. Noble of the Metropolitan \Iuseum o f Art, 
deduced the general plan of the clock from the grooves. 
holes, and stains its fillings had left in the tower' ~ floor . 
The project was "akin to re-creatin g the workings of a 
suburban kitchen in an empty room, using the relative 
positions of electric sockets. pipe holt:s. and r.:ctan gular 
floor stains as evidence." Price remarked ill a .\'ulinna/ 

Geographic art icle describing the work. 5 

I first contacted Derek Price in 197R to obtain p.:rmis
sion to use a diagram of the Antikythera mt:chanisrn 's 
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RECONSTRUCfION OF THE DIAL PLATES AND CASING 
Gf the Antikythera mechanism shGWS the dimensions Gf the Griginal 
device-abGut 6.5 X 12.5 X 3.5 inches. The instrument was de
signed to be held Gr stGGd vertically and Gperated with a crank. 
The dial plates and internal gearing were made Gf bronze; the caS. 
ing, Gf which very Uttle has survived, was constructed Gf wood. Door 
plates covered the front and rear dial plates-bGth the dGGr and 
dial plates bGre inscriptiGns containing info.rmatiGn used in the 
GperatiGn Gf the device. The frGnt dial cGnsisted Gf a fixed inner 
ring with 12 divisiGns fGr the 12 constellatiGns Gf the zodiac and 
a mGvable Guter ring with divisiGns fGr the mGnths Gf the year. A 

gears on the cover of a minicomputer system text I had 
coauthored.6 My editor at first protested, maintaining 
that this would suggest a mechanical engineering text, but 
I noted that the Antikythera mechanism, besides being 
the first computer, was also a minicomputer. (The dimen
sions of the Antikythera cabinet were remarkably close 
to those of the TRS-80 Model 100 Portable Computer!) 
Also, using a block diagram compiler, ANIM8, I had con
structed an animated version of the gears for a stroke
vector graphics system. (Price had a mechanical 
reconstruction on his desk.) I spoke to Derek Price again 
early in 1983, asking if he would be willing to write an 
article for IEEE Micro. He then revealed the existence 
of the article we are presenting here, hitherto unpublished 
and his first (and only) for a computer-related journal. 
When I asked him why the Antikythera mechanism was 
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marker was attached to. the dial to. indicate the place in the year. 
Thus, the dial shGwed the annual mGtiGn Gf the sun in the zGdiac 
and-indirectly-the risings and settings Gf bright stars and con· 
stellatio.ns throughGut the year. The back dials comprised an up· 
per dial with four mGvable rings and a IGwer dial with three mGvable 
rings. The upper dial indicated risings and settings Gf planets; the 
Io.wer dial pro.vided a phase-Gf·mGGn indicatiGn and mo.o.nrise and 
set times. The side view shGWS four pivots, N, M, B, and G, which 
co.rrespo.nd to. the pivGts indicated in the figure Gn page 20. (Draw· 
ing Co.urtesy estate of Derek de So.lla Price.) 

not more prominent in the article, he said that most peo
ple were fairly familiar with it. This is obviously not the 
case in the computer area, and we hope that this note and 
his article will help remedy the situation. 

During a recent holiday in Greece, my wife and I made 
a point to visit the Athens museum, only to find the gears 
hidden from public view due to'gallery renovations. With 
special permission, we were able to view the fragments 
of the world's first known computing mechanism. Upon 
our return to Canada, I immediately phoned Price's of
fice, hoping to persuade him to spearhead an attempt to 
convince the Greek government to allow the "dormant" 
gears to be put on show temporarily in the new 
Massachusetts computer museum. I then learned that 
Derek de Solla Price had died suddenly while visiting 
family in England, on September 3,1983. With his pass-

19 



20 

GENERAL PLAN OF ALL GEARING illustrates the complex· 
ity of the Antikythera mechanism and the detailed nature of Price's 
final reconstruction. The part labeled "A" was a crown, or con· 

ing, we lose an original contributor to the history of 
calculating machines. In this, the IEEE's centennial year, 
it is particularly appropriate to consider the twin threads 
of mathematics and craftsmanship that tie us to the 

trate, wheel that was attached to the crank; it eneaeed the main 
drive wheel at a right angle. IOrawine counl.'S~' estate of Derek 
de 80lla Price.) 

machine designers and builders of cenruries past. And it 
is particularly fortunate that in these pages we have Pro. 
fessor Price-scientist. historian. decipherer of ancient 
machines-to trace those threads for us .• 
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SECfIONAL DIAGRAM OF THE GEARING SYSTEM shows 
the relationships among the various gear trains. The contrate wheel 
and crank are at upper left; the main drive wheel is at upper center 
and is labeled "Bl:' The number inside the diagram of each wheel 
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indicates the number of gear teeth on that wheel-45 for ~he 
contrate, for example. (Drawing courtesy estate of Derek de 
Soli a Price.) 
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